航母舰载机尾流冲击偏流板的噪声辐射严重威胁着地勤人员的身心健康及航母甲板上精密仪器的安全,该问题可简化为超声速射流冲击斜板问题。通过高频粒子图像测速法(PIV)与远场噪声测量研究了不同喷口-斜板冲击距离下斜板表面凹槽结构对冲击噪声特性的影响,以探索凹槽结构的降噪机理及确定合适的尾喷管-偏流板冲击距离。结果表明:斜板表面开槽能有效降低冲击射流噪声,且降噪效果与冲击距离关系密切,当冲击距离为3~5倍喷口直径(L/d=3~5)时,开槽斜板在L/d=3.8时降噪效果最佳;开槽斜板能有效降低超声速冲击射流噪声主要缘于其对啸声具有良好的抑制作用;马赫数为1.12时,对于出口直径d=56 mm 的圆形喷口而言,啸声主要声源区位于第4个激波格栅后边缘处,这与目前的普遍认知相符。合适的冲击距离下,凹槽结构刚好能影响该激波格栅,从而有效抑制啸声。
The noise radiation of the aircraft carrier seriously threatens the physical and mental health of the ground personality and the safety of the precision instruments on the aircraft carrier, and this problem can be simplified as a supersonic jet impact inclined plate problem. This paper studies the influence of the surface groove structure on the impact noise characteristics with high frequency Particle Image Velocimetry (PIV) and far field noise measurement to explore the noise reduction mechanism of the groove structure and determine the nozzle-deflector impact distance. The results show that the slotted surface of the inclined plate can effectively reduce the impact jet noise, and the noise reduction effect is closely related to the impact distance. If the impact distance is 3-5 times the nozzle diameter (L/d=3-5), the noise reduction effect of the slotted inclined plate is the best at L/d=3.8. The slotted inclined plate can effectively reduce the noise of supersonic impinging jet mainly because of its good inhibitory effect on the screech tone. When the Mach number is 1.12, the main sound source area of the screech tone is located at the rear edge of the fourth shock cells for a circular nozzle with an outlet diameter of d=56 mm, which is consistent with the current general knowledge. With a proper impact distance, the groove structure can affect the shock cells, thereby effectively suppressing the screech tone.
[1] POWELL A, UMEDA Y, ISHII R. Observations of the oscillation modes of choked circular jets[J]. The Journal of the Acoustical Society of America, 1992, 92(5): 2823-2836.
[2] GOJON R, BOGEY C, MARSDEN O. Investigation of tone generation in ideally expanded supersonic planar impinging jets using large-eddy simulation[J]. Journal of Fluid Mechanics, 2016, 808: 90-115.
[3] AKAMINE M, NAKANISHI Y, OKAMOTO K, et al. Acoustic phenomena from correctly expanded supersonic jet impinging on inclined plate[J]. AIAA Journal, 2015, 53(7): 2061-2067.
[4] 汪洋海, 李晓东. 超声速喷流啸声的控制方法[J]. 推进技术, 2007, 28(2): 211-215. WANG Y H, LI X D. Control methods for supersonic jet screech tones[J]. Journal of Propulsion Technology, 2007, 28(2): 211-215 (in Chinese).
[5] BALAKRISHNAN P, SRINIVASAN K. Impinging jet noise reduction using non-circular jets[J]. Applied Acoustics, 2019, 143: 19-30.
[6] CHEN Z, WU J H, REN A D, et al. Energy transfer mechanism of supersonic jet noise through rectangular nozzles[J]. Noise Control Engineering Journal, 2017, 65(2): 110-120.
[7] 张俊龙, 雷红胜, 田昊, 等. 亚声速矩形射流的噪声辐射特性和声源分布[J]. 航空学报, 2020, 41(2): 123386. ZHANG J L, LEI H S, TIAN H, et al. Noise radiation characteristics and source distribution of subsonic rectangular jet[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123386 (in Chinese).
[8] HIEJIMA T. A factor involved in efficient breakdown of supersonic streamwise vortices[J]. Physics of Fluids, 2015, 27(3): 034103.
[9] UZUN A, HUSSAINI M Y. Simulation of noise generation in near-nozzle region of a chevron nozzle jet[J]. AIAA Journal, 2009, 47(8):1793-1810.
[10] 李晓东, 徐希海, 高军辉, 等. 喷流噪声研究进展与展望[J]. 空气动力学学报, 2018, 36(3): 398-409. LI X D, XU X H, GAO J H, et al. Progress and prospect on jet noise study[J]. Acta Aerodynamica Sinica, 2018, 36(3): 398-409 (in Chinese).
[11] XIA H, TUCKER P G. Numerical simulation of single-stream jets from a serrated nozzle[J]. Flow, Turbulence and Combustion, 2012, 88(1-2): 3-18.
[12] HUMPHREY N J, EDGINGTON-MITCHELL D. The effect of low lobe count chevron nozzles on supersonic jet screech[J]. International Journal of Aeroacoustics, 2016, 15(3): 294-311.
[13] 何敬玉, 邵万仁, 许影博, 等. V形槽喷管在分开式排气系统中的降噪实验[J]. 航空动力学报, 2015, 30(2): 324-330. HE J Y, SHAO W R, XU Y B, et al. Experiment of noise reduction in separate flow system using chevron nozzles[J]. Journal of Aerospace Power, 2015, 30(2): 324-330 (in Chinese).
[14] 单勇, 张靖周, 邵万仁, 等. 冠状喷口抑制涡扇发动机喷流噪声试验和数值研究[J]. 航空学报, 2013, 34(5): 1046-1056. SHAN Y, ZHANG J Z, SHAO W R, et al. Experimental and numerical research on jet noise suppression with chevron nozzle for turbofan engines[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1046-1056 (in Chinese).
[15] DHAMANEKAR A, SRINIVASAN K. Effect of impingement surface roughness on the noise from impinging jets[J]. Physics of Fluids, 2014, 26(3): 036101.
[16] CLARK I, BAKER D, ALEXANDER W N, et al. Experimental and theoretical analysis of bio-inspired trailing edge noise control devices: AIAA-2016-3020[R]. Reston: AIAA, 2016.
[17] TSUTSUMI S, NONOMURA T, FUJII K, et al. Mechanism of acoustic radiation from Supersonic Jets Impinging to Inclined Flat Plates[J]. The Journal of the Acoustical Society of America, 2011, 130(4): 2511.
[18] KOSCHATZKY V, MOORE P D, WESTERWEEL J, et al. High speed PIV applied to aerodynamic noise investigation[J]. Experiments in Fluids, 2011, 50(4): 863-876.
[19] NONOMURA T, HONDA H, NAGATA Y, et al. Plate-angle effects on acoustic waves from supersonic jets impinging on inclined plates[J]. AIAA Journal, 2016, 54(3): 816-827.
[20] RAMAN G. Advances in understanding supersonic jet screech: Review and perspective[J]. Progress in Aerospace Sciences, 1998, 34(1-2): 45-106.
[21] UMEDA Y, ISHII R. On the sound sources of screech tones radiated from choked circular jets[J]. The Journal of the Acoustical Society of America, 2001, 110(4): 1845-1858.
[22] DAUPTAIN A, CUENOT B, GICQUEL L Y M. Large eddy simulation of stable supersonic jet impinging on flat plate[J]. AIAA Journal, 2010, 48(10): 2325-2338.
[23] 何枫, 谢峻石, 姚朝晖. 超声速欠膨胀冲击射流的数值模拟[J]. 推进技术, 2002, 23(2): 96-99. HE F, XIE J S, YAO Z H. Numerical simulation under-expanded supersonic impinging jet[J]. Journal of Propulsion Technology, 2002, 23(2): 96-99 (in Chinese).
[24] POWELL A. On the mechanism of choked jet noise[J]. Proceedings of the Physical Society Section B, 1953, 66(12): 1039-1056.