The integrated design of fuselage and nozzle after-body structure is particularly important in improving the lateral and backward stealth performance of high stealth UAV. However, the design also brings new challenges in fields of aerodynamics, structure and strength. The prediction of aerodynamic load under the effect of jet is one of the key problems. Therefore, based on the CFD method and wind tunnel test data, the steady and dynamic aerodynamic loads and their influence laws of high stealth UAV nozzle and after-body structure are studied. The main conclusions are as follows:the complex wave system formed by the jet projected onto the after-body wall will form the aerodynamic loads of alternating pressure and suction, which are rather sensitive to the nozzle pressure ratio. A small pressure ration change may lead to the change of lad direction, and the steady-state aerodynamic load distribution is also affected by the inflow velocity and the secondary/mainstream flow ratio. The numerical calculation based on IDDES method also has good prediction accuracy for dynamic aerodynamic load. The flow field is divided into several regions, such as the mixing region of jet mainstream and secondary flow, the core region of jet, the mixing region of jet mainstream and secondary flow, the core region of jet, the mixing region of jet and outer-flow, which is helpful to reveal the distribution law of fluctuating pressure from the flow mechanism, and has been verified by experiments. The results show that the extreme region of dynamic load is located at the boundary of jet region, where the shear mixing is the strongest. While, in the core region of the jet, although the steady aerodynamic load is strong, the dynamic aerodynamic load is relatively low.
[1] 杨承宇, 张靖周, 单勇. 单边膨胀喷管红外辐射特性的数值模拟[J]. 航空学报, 2010, 31(10):1920-1926. YANG C Y, ZHANG J Z, SHAN Y. Numerical simulation on infrared radiation characteristics of single expansion ramp nozzles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10):1920-1926(in Chinese).
[2] NANGIA R K, PALMER M E. A comparative study of UCAV type wing platforms-aero performance & stability considerations:AIAA-2005-5078[R]. Reston:AIAA, 2005.
[3] 徐啟云, 王洁, 郝文渊, 等. 国外无人战斗机发展历程和趋势[J]. 飞航导弹, 2016, (3):28-32. XU Q Y, WANG J, HAO W Y, et al. Development history and trend of foreign UCAVs[J]. Aerodynamic Missile Journal, 2016, (3):28-32(in Chinese).
[4] 马怡, 潘志雄, 罗烈. X-47B飞翼气动布局设计分析[J]. 航空科学技术, 2014, 25(12):1-4. MA Y, PAN Z X, LUO L. X-47B flying wing aerodynamic configuration analysis[J]. Aeronautical Science & Technology, 2014,25(12):1-4(in Chinese).
[5] 符成山, 吴惟诚, 雷东. 美军无人机装备现状及发展趋势[J]. 飞航导弹, 2019(9):46-52. FU C S, WU W C, LEI D. Present situation and development trend of UAV equipment in US military[J]. Aerodynamic Missile Journal, 2019(9):46-52(in Chinese).
[6] 魏国福, 周军, 邢娅. 欧洲神经元无人攻击机发展历程[J]. 飞航导弹, 2013(8):23-26. WEI G F, ZHOU J, XING Y. The development of European neuron unmanned attack aircraft[J]. Aerodynamic Missile Journal, 2013(8):23-26(in Chinese).
[7] 潘金宽. 俄军重型无人机发展现状[J]. 军事文摘, 2019(9):24-27. PAN J K. Development status of Russian heavy UAV[J]. Military Digest, 2019(9):24-27(in Chinese).
[8] 单勇,陈著,尚守堂,等. 与飞机融合的单边膨胀喷管排气系统气动和红外辐射特征数值计算[J]. 航空发动机,2014, 40(2):1-5. SHAN Y, CHEN Z,SHANG S T, et al. Aerodynamic and infrared radiation characteristics numerical simulation on single expansion ramp nozzle within aircraft[J]. Aeroengine, 2014, 40(2):1-5(in Chinese).
[9] 张少丽, 单勇, 张靖周, 等. 单边膨胀矢量喷管气动和红外特性研究[J]. 航空学报, 2012, 33(8):1406-1416. ZHANG S L, SHANG Y, ZHANG J Z, et al. Research on the aerodynamic and infrared radiation characteristics of single expansion ramp vector nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1406-1416(in Chinese).
[10] 徐嘉,蔡晋生,刘秋洪. 战斗机后体流场数值模拟与减阻优化设计[J].空气动力学学报,2014,32(1):38-44. XU J, CAI J S, LIU Q H. Numerical investigation of jet interactions and optimization design of drag reduction for the after body of jet aircraft[J]. Acta Aerodynamica Sinica, 2014, 32(1):38-44(in Chinese).
[11] 杨承宇.S弯通道单边膨胀喷管气动和红外特性数值研究[D]. 南京:南京航空航天大学, 2019. YANG C Y. Numerical investigation on pneumatic performances and infrared radiation characteristics of an s-shaped tunnel single expansion ramp nozzle[D]. Naijing:Nanjing University of Aeronautics and Astronautics, 2019(in Chinese).
[12] 李春鹏, 刘铁中, 钱战森, 等. 无尾布局后体超声速航向增稳设计方法[J]. 航空学报, 2020, 41(6):523447. LI C P, LIU T Z, QIAN Z S, et al. Afterbody supersonic directional stability augmentation method for tailless configuration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):523447(in Chinese).
[13] 朱文庆, 肖志祥, 符松. 使用IDDES方法预测飞行速度对喷流噪声的影响[J]. 空气动力学学报, 2018, 36(3):463-469. ZHU W Q, XIAO Z X, FU S. Effects off light velocity on jet noise predicted by IDDES method[J]. Acta Aerodynamica Sinica, 2018, 36(3):463-469(in Chinese).
[14] VISWANATHAN K. Aeroacoustics of hot jets[J]. Journal of Fluid Mechanics, 2004, 516:39-82.
[15] VISWANATHAN K, CZECH M. Measurement and modeling of effect of forward flight on jet noise[J]. AIAA Journal, 2011, 49(1):216-234.
[16] 朱志斌, 程晓丽, 潘宏禄. 超声速喷流混合流场大涡模拟[J]. 航空动力学报, 2019, 34(1):210-216. ZHU Z B, CHENG X L, PAN H L. Large eddy simulation of supersonic jet mixing flow[J]. Journal of Aero Space Power, 2019, 34(1):210-216(in Chinese).
[17] 刘旭亮, 张树海. 二维激波与剪切层相互作用的直接数值模拟研究[J]. 力学学报, 2013, 45(1):61-75. LIU X L, ZHANG S H. Direct numerical simulation of the interaction of two-dimensional shock wave and shear layer[J]. Acta Mechanica Sinica, 2013, 45(1):61-75(in Chinese).
[18] TAM C K, PASTOUCHENKO N, VISWANATHAN K, et al. Computation of shock cell structure of dual-stream jets for noise prediction[J]. AIAA Journal, 2008, 46(11):2857-2867
[19] TAM C K, PASTOUCHENKO N, VISWANATHAN K, et al. Broadband shock-cell noise from dual stream jets[J]. Journal of Soundand Vibration, 2009, 324(3):861-891.
[20] NORUM T D, SEINER J M. Measurements of mean static pressure and farfield acoustics of shock containing supersonic jets:NASA TM-84521[R]. Washington,D.C.:NASA, 1982.
[21] 李栋, 焦予秦, 宋科. 喷流-外流干扰流场数值模拟[J]. 航空学报, 2008, 29(2):292-296. LI D, JIAO Y Q, SONG K. Numerical simulation of external flow interfered by jet flow[J]. Acta Aeronauticaet Astronautica Sinica, 2008, 29(2):292-296(in Chinese).
[22] XIAO L H, XIAO Z X, DUAN Z W, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51:138-150.
[23] SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41:181-202.
[24] 高速风洞和低速风洞测力试验精度指标:GJB 1069-1991[S]. 北京:国防科学技术工业委员会, 1991. Requirement for force-test precision of high and low speed wind tunnels:GJB 1069-1991[S]. Beijing:China Commission of Science Technology and Industry for National Defense, 1991(in Chinese).
[25] 刘晞远, 胡昊颖, 吴珊, 等. AR模型的谱分辨率及小信噪比下的性能分析[J]. 船舶电子工程, 2018, 38(7):126-131. LIU X Y, HU H Y, WU S, et al. Performance analysis on spectrum resolution ratio and small noise-signal ratio of ar model-based power spectrum estimation[J]. Ship Electronic Engineering, 2018, 38(7):126-131(in Chinese).
[26] 刘明晓, 王旭光. 基于MATLAB实现的AR模型功率谱估计[J]. 电子设计工程, 2017, 25(17):129-132. LIU M X, WANG X G. Performance analysis on spectrum resolution ratio and small noise-signal ratio of AR model-based power spectrum estimation[J]. Electronic Design Engineering, 2017, 25(17):129-132(in Chinese).