论文

高超声速全动翼面全时域耦合分析方法及应用

  • 沈恩楠 ,
  • 郭同庆 ,
  • 吴江鹏 ,
  • 胡家亮 ,
  • 张桂江
展开
  • 1. 航空工业沈阳飞机设计研究所, 沈阳 110035;
    2. 南京航空航天大学 航空学院, 南京 210016

收稿日期: 2021-04-18

  修回日期: 2021-05-08

  网络出版日期: 2021-05-21

基金资助

沈阳飞机设计研究所博士创新基金(SBJ-004)

Full-time coupling method and application of a hypersonic all-movable wing

  • SHEN Ennan ,
  • GUO Tongqing ,
  • WU Jiangpeng ,
  • HU Jialiang ,
  • ZHANG Guijiang
Expand
  • 1. AVIC Shenyang Aircraft Design and Research Institute, Shenyang 110035, China;
    2. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2021-04-18

  Revised date: 2021-05-08

  Online published: 2021-05-21

Supported by

Ph.D. Innovation Foundation of Shenyang Aircraft Design and Research Institute(SBJ-004)

摘要

在流场-结构温度场同步计算方法的基础上,建立了多物理场全时域耦合分析方法,将方法应用于沿轨道运动的高超声速全动翼面热气动弹性稳定性分析。采用基于有限体积模型的CFD同步计算方法求解高超声速流场和结构温度场,建立映射关系实现结构有限元模型气动载荷加载和温度场赋值。采用移动坐标系和动网格相结合的方式描述变速度飞行和翼面偏转过程。通过坐标系变换将翼面偏转过程和振动过程的网格变形量叠加,考虑翼面振动和偏转的耦合非定常效应。针对沿轨道运动的高超声速飞行器,建立了同步计算方法与全时域耦合分析方法相结合的热气动弹性稳定性分析流程。研究发现,与同步计算方法相比,全时域耦合分析方法能够模拟结构振动对流场和结构温度场的影响,计算得到的监测点热流密度波动幅值占热流峰值的10%左右,而温度变化并不明显,相比于刚体模型,监测点温度只下降了0.3%左右。全时域耦合热气动弹性分析方法得到的颤振临界点在4-5号状态点之间,颤振形式为铰链扭转模态与一阶弯曲模态的耦合颤振,与"冻结"模态的热颤振方法结果一致。

本文引用格式

沈恩楠 , 郭同庆 , 吴江鹏 , 胡家亮 , 张桂江 . 高超声速全动翼面全时域耦合分析方法及应用[J]. 航空学报, 2021 , 42(8) : 525773 -525773 . DOI: 10.7527/S1000-6893.2021.25773

Abstract

Based on the synchronous method of flow-structure temperature field, a multi field full-time coupling method is established for the aerothermoelastic stability and transient response analysis of a hypersonic all-movable wing along the trajectory. The aerothermal synchronization algorithm is used to simulate the hypersonic flow and the structural temperature field. The interpolation methods of aerodynamic and the structure temperature field are established. The non-inertial frame of reference describing the attitude, and the dynamic grids methods describing the wing vibration are superimposed by coordinate transformation. The coupling unsteady effect of the attitude and vibration of the all-movable wing is considered. Finally, an aerothermoelastic stability analysis method combining synchronization algorithm with full-time coupling method is established. The present method is applied to the thermal flutter prediction and transient response analysis of a hypersonic all-movable wing operating along a given trajectory. It is found that due to the influence of structural vibration, fluctuation amplitude of heat flux at the monitoring point accounts for about 10% of the peak, while temperature decreased about 0.3%. A coupled bending-torsion flutter is obtained by the full-time coupling method is between the 4-5 trajectory state points, which is consistent with the results of the "modal freezing" thermal flutter method.

参考文献

[1] LIVNE E, WEISSHAAR T A. Aeroelasticity of nonconventional airplane configurations-past and future[J].Journal of Aircraft, 2003, 40(6):1047-1065.
[2] 杨超,许赟,谢长川.高超声速飞行器气动弹性力学研究综述[J].航空学报, 2010, 31(1):1-11 YANG C,XU Y, XIE C C. Review of studies on aeroelasticity of hypersonic veicles.[J] Acta Aeronautica et Astronautica Sinica, 2010,31(1):1-11(in Chinese).
[3] KLOCK R, CESNIK C E. Aerothermoelastic reduced-order model of a hypersonic vehicle[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2015.
[4] MCNAMARA J, FRIEDMANN P, POWELL K, et al. Three-dimensional aeroelastic and aerothermoelastic behavior in hypersonic flow[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2005.
[5] MCNAMARA J J, FRIEDMANN P P, POWELL K G, et al. Aeroelastic and aerothermoelastic behavior in hypersonic flow[J].AIAA Journal, 2008, 46(10):2591-2610.
[6] LV J, WANG F, GUO L, et al. CFD/CSD approach to predict hypersonic aerothermoelastic response of a wing[J].Procedia Engineering, 2015, 126:123-127.
[7] YE K, YE Z, ZHANG Q, et al. Study on areothermoelastic for hypersonic all moving control surface[C]//International Bhurban Conference on Applied Sciences and Technology.Piscataway:IEEE Press, 2016:467-475.
[8] GUO T Q, SHEN E N,LU Z L, et al. Thermal flutter prediction at trajectory points of a hypersonic vehicle based on aerothermal synchronization algorithm[J].Aerospace Science and Tecnology, 2019, 94:105381.
[9] 张伟伟, 夏巍, 叶正寅. 一种高超音速热气动弹性数值研究方法[J].工程力学, 2006, 23(2):41-46. ZHANG W W, XIA W, YE Z Y. A numerical method for hypersonic aerothermoelasticity[J].Engineering Mechanics, 2006, 23(2):41-46(in Chinese).
[10] 吴志刚, 惠俊鹏, 杨超. 高超声速下翼面的热颤振工程分析[J].北京航空航天大学学报, 2005, 31(3):270-273. WU Z G, HUI J P, YANG C. Hypersonic aerothermoelastic analysis of wings[J].Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(3):270-273(in Chinese).
[11] 史晓鸣, 杨炳渊. 瞬态加热环境下变厚度板温度场及热模态分析[J].计算机辅助工程, 2006, 15(b09):15-18. SHI X M, YANG B Y. Temperature field and mode analysis of flat plate with thermal environment of transient heating[J].Computer Aided Engineering, 2006, 15(b09):15-18(in Chinese).
[12] 叶献辉, 杨翊仁. 三维壁板热颤振分析[J].振动与冲击, 2008, 27(6):55-59. YE X H, YANG Y R. Thermal flutter analysis of a three-dimension panel[J].Journal of Vibration and Shock, 2008, 27(6):55-59(in Chinese).
[13] 吴振强, 程昊, 张伟,等. 热环境对飞行器壁板结构动特性的影响[J].航空学报, 2013, 34(2):334-342. WU Z Q, CHENG H, ZHANG W, et al. Effects of thermal environment on dynamic properties of aerospace vehicle panel structures[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(2):334-342(in Chinese).
[14] 王宏宏, 陈怀海, 崔旭利,等. 热效应对导弹翼面固有振动特性的影响[J].振动、测试与诊断, 2010, 30(3):275-279. WANG H H, CHEN H H, CUI X L et al. Thermal effect on dynamic characteristics of a missile wing[J].Journal of Vibration, Measurement & Diagnosis, 2010, 30(3):275-279(in Chinese).
[15] 杨享文, 武洁, 叶坤,等. 高超声速全动舵面的热气动弹性研究[J].力学学报, 2014, 46(4):626-630. YANG X W, WU J, YE K,et al. Study on aerothermoelasticity of a hypersonic all-movable control surface[J].Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4):626-630(in Chinese).
[16] 刘成, 叶正寅, 叶坤. 转捩位置对全动舵面热气动弹性的影响[J].力学学报, 2017, 49(4):802-810. LIU C, YE Z Y, YE K. The effect of transition location on aerothermoelasticity of a hypersonic all-movable control surface[J].Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4):802-810(in Chinese).
[17] 谭光辉, 李秋彦, 冉玉国,等. 一种高超音速热颤振工程分析方法[C]//第十一届全国空气弹性学术交流会, 2009:34-37. TAN G H, LI Q Y, RAN Y G,et al.An engineer method for hypersonic flutter with thermal effects[C]//The 11th National Aeroelasticity Academic Conference, 2009:34-37(in Chinese).
[18] 李丽丽. 气动加热环境下壁板的颤振分析方法研究[D]. 南京:南京航空航天大学, 2012:7-57. LI L L. Thermal flutter analysis of panel under the aerodynamic heating environment[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:7-57(in Chinese).
[19] 桂业伟,刘磊,耿湘人,等.气动力/热与结构多场耦合计算策略与方法研究[J].工程热物理学报,2015, 36(5):1047-1051. GUI Y W, LIU L, GENG X R,et al. Study on the computation strategy and method of aero-dynamic -thermal-structural coupling problem.[J] Journal of Engineering Thermophysics, 2015, 36(5):1047-1051(in Chinese).
[20] 叶正寅,孟宪宗,刘成,等.高超声速飞行器气动弹性的近期进展与发展展望[J].空气动力学学报,2018, 36(6):984-994. YE Z Y,MENG X Z, LIU C, et al. Process and prospects on aeroelasticity of hypersonic vehicles[J].Acta Aerodynamica Sinica, 2018, 36(6):984-994(in Chinsese).
[21] 沈恩楠,陆志良,郭同庆,等.考虑空腔的高超声速多流动区域同步数值模拟[J].空气动力学学报,2019,37(6):931-937. SHEN E N, LU Z L, GUO T Q, et al. A synchronized method for multi-regional simulation in hypersonic flow with inclusion of convection in a contained cavity[J].Acta Aerodynamica Sinica, 2019, 37(6):931-937(in Chinese).
文章导航

/