国家数值风洞(NNW)进展及应用专栏

导热-辐射耦合传热的多尺度分析和数值模型

  • 童自翔 ,
  • 李明佳 ,
  • 李冬
展开
  • 1. 西安交通大学 人居环境与建筑工程学院, 西安 710049;
    2. 西安交通大学 能源与动力工程学院 热流科学与工程教育部重点实验室, 西安 710049

收稿日期: 2021-03-30

  修回日期: 2021-04-27

  网络出版日期: 2021-05-21

基金资助

国家数值风洞工程;国家自然科学基金(51906186)

Multiscale analysis and numerical model for coupled conduction-radiation heat transfer

  • TONG Zixiang ,
  • LI Mingjia ,
  • LI Dong
Expand
  • 1. School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
    2. Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2021-03-30

  Revised date: 2021-04-27

  Online published: 2021-05-21

Supported by

National Numerical Windtunnel Project; National Natural Science Foundation of China (51906186)

摘要

复合材料高温传热特性的准确预测对飞行器热防护结构的设计有重要意义,相关模型也是国家数值风洞工程中多相多介质计算模型的重要组成部分。针对周期性结构复合材料的高温传热问题,利用多尺度渐进分析方法,对包含导热方程和辐射传输方程的导热-辐射耦合传热模型开展了研究。建立了表征单元尺度模型及宏观平均导热-辐射耦合传热模型,获得了材料宏观等效导热系数与表征单元模型间的关系,发现宏观等效辐射吸收和散射等系数可通过表征单元内的体积平均求取。结合有限容积方法与格子Boltzmann方法,建立了复合材料导热-辐射耦合传热多尺度数值模型。采用二维常物性材料传热过程的模拟验证了多尺度模型的有效性,结果表明所建立的多尺度模型能够对温度场给出准确高效的计算结果。该方法有助于为复合材料传热特性的预测提供数值手段。

本文引用格式

童自翔 , 李明佳 , 李冬 . 导热-辐射耦合传热的多尺度分析和数值模型[J]. 航空学报, 2021 , 42(9) : 625729 -625729 . DOI: 10.7527/S1000-6893.2021.25729

Abstract

Predictions of the heat transfer processes in composite materials are important for designs of thermal protection structures of hypersonic vehicles. The corresponding model is also an essential part of the multiphase-multicomponent sub-model of the National Numerical Windtunnel Project. In this work, a multiscale asymptotic analysis method is used to study the problem of coupled conduction-radiation heat transfer for high temperature composite materials with periodic structures. Both the conduction equation and radiative transfer equation are analyzed. The cell problem and homogenized macroscopic conduction and radiation equations are established. The relation between effective thermal conductivity and the results of the cell problem is obtained. It is also found that the radiative absorption and scattering coefficients can be calculated from the volumetric averages in a representative element. A multiscale numerical model for conduction-radiation heat transfer in composite materials is built based on the finite volume method and the lattice Boltzmann method. The multiscale model is validated by the simulation of heat transfer in 2D materials with constant thermal properties. It is shown that the temperature fields can be effectively and accurately calculated by the multiscale model proposed. The model can be further used in the prediction of high-temperature heat transfer processes in composite materials.

参考文献

[1] 陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷, 2017, 38(5):311-390. CHEN Y F, HONG C Q, HU C L, et al. Ceramic-based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics, 2017, 38(5):311-390(in Chinese).
[2] 何雅玲, 谢涛. 气凝胶纳米多孔材料传热计算模型研究进展[J]. 科学通报, 2015, 60(2):137-163. HE Y L, XIE T. A review of heat transfer models of nanoporous silica aerogel insulation material[J]. Chinese Science Bulletin, 2015, 60(2):137-163(in Chinese).
[3] HE Y L, XIE T. Advances of thermal conductivity models of nanoscale silica aerogel insulation material[J]. Applied Thermal Engineering, 2015, 81:28-50.
[4] DU S, TONG Z X, ZHANG H H, et al. Tomography-based determination of Nusselt number correlation for the porous volumetric solar receiver with different geometrical parameters[J]. Renewable Energy, 2019, 135:711-718.
[5] 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J/OL]. 中国科学:技术科学,(2021-04-28)[2021-05-19]. https://kns.cnki.net/kcms/detail/11.5844.TH.20210-428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J/OL]. Scientia Sinica Technologica, (2021-04-28)[2021-05-19]. https://kns.cnki.net/kcms/detail/11.5844.TH.20210428.0914.006.html (in Chinese).
[6] QIN F, PENG L N, LI J, et al. Numerical simulations of multiscale ablation of carbon/carbon throat with morphology effects[J]. AIAA Journal, 2017, 55(10):3476-3485.
[7] BENSOUSSAN A, LIONS J L, PAPANICOLAOU G. Asymptotic analysis for periodic structures[M]. Providence:American Mathematical Society, 2011.
[8] E W N. Principles of multiscale modeling[M]. Cambridge:Cambridge University Press, 2011.
[9] 曹礼群, 罗剑兰. 多孔复合介质周期结构热传导和质扩散问题的多尺度数值方法[J]. 工程热物理学报, 2000, 21(5):610-614. CAO L Q, LUO J L. Multiscale numerical methods for heat and mass transfer problems of composite porous media with a periodic structures[J]. Journal of Engineering Thermophysics, 2000, 21(5):610-614(in Chinese).
[10] LIU S T, ZHANG Y C. Multi-scale analysis method for thermal conductivity of porous material with radiation[J]. Multidiscipline Modeling in Materials and Structures, 2006, 2(3):327-344.
[11] ALLAIRE G, EL GANAOUI K. Homogenization of a conductive and radiative heat transfer problem[J]. Multiscale Modeling & Simulation, 2009, 7(3):1148-1170.
[12] YANG Z Q, CUI J Z, NIE Y F, et al. The second-order two-scale method for heat transfer performances of periodic porous materials with interior surface radiation[J]. Computer Modeling in Engineering and Sciences, 2012, 88(5):419-442.
[13] YANG Z Q, CUI J Z, SUN Y, et al. Multiscale computation for transient heat conduction problem with radiation boundary condition in porous materials[J]. Finite Elements in Analysis and Design, 2015, 102-103:7-18.
[14] YANG Z Q, SUN Y, CUI J Z, et al. A three-scale homogenization algorithm for coupled conduction-radiation problems in porous materials with multiple configurations[J]. International Journal of Heat and Mass Transfer, 2018, 125:1196-1211.
[15] HAYMES R, GAL E. Iterative multiscale approach for heat conduction with radiation problem in porous materials[J]. Journal of Heat Transfer, 2018, 140(8):082002.
[16] YANG Z Q, CUI J Z, MA Q, et al. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials[J]. Discrete & Continuous Dynamical Systems-B, 2014, 19(3):827-848.
[17] ALLAIRE G, HABIBI Z. Homogenization of a conductive, convective, and radiative heat transfer problem in a heterogeneous domain[J]. SIAM Journal on Mathematical Analysis, 2013, 45(3):1136-1178.
[18] HUANG J Z, CAO L Q. Global regularity and multiscale approach for thermal radiation heat transfer[J]. Multiscale Modeling & Simulation, 2014, 12(2):694-724.
[19] HUANG J Z, CAO L Q, YANG C. A multiscale algorithm for radiative heat transfer equation with rapidly oscillating coefficients[J]. Applied Mathematics and Computation, 2015, 266:149-168.
[20] HOWELL J R, SIEGEL R, MENGUC M P. Thermal radiation heat transfer[M]. 5th ed, Boca Raton:CRC Press, 2010.
[21] TONG Z X, LI M J, XIE T, et al. Lattice Boltzmann method for conduction and radiation heat transfer and its application in composite materials[J]. Journal of Thermal Science, 2021, Accepted.
[22] MCHARDY C, HORNEBER T, RAUH C. New lattice Boltzmann method for the simulation of three-dimensional radiation transfer in turbid media[J]. Optics Express, 2016, 24(15):16999-17017.
[23] 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京:科学出版社, 2009. HE Y L, WANG Y, LI Q. Lattice Boltzmann method:Theory and applications[M]. Beijing:Science Press, 2009(in Chinese).
[24] ASINARI P, MISHRA S C, BORCHIELLINI R. A lattice Boltzmann formulation for the analysis of radiative heat transfer problems in a participating medium[J]. Numerical Heat Transfer, Part B:Fundamentals, 2010, 57(2):126-146.
文章导航

/