材料工程与机械制造

热环境下纤维增强复合材料圆柱壳非线性振动分析与验证

  • 李晖 ,
  • 吕海宇 ,
  • 邹泽煜 ,
  • 罗忠 ,
  • 马辉 ,
  • 韩清凯
展开
  • 1. 东北大学 机械工程与自动化学院, 沈阳 110819;
    2. 东北大学 航空动力装备振动及控制教育部重点实验室, 沈阳 110819

收稿日期: 2021-04-08

  修回日期: 2021-04-26

  网络出版日期: 2021-05-21

基金资助

国家自然科学基金(52175079);特种环境复合材料技术国家级重点实验室基金(6142905192512);中央高校基本科研业务费专项资金(N2103026);中国博士后科学基金(2020M680990);航空发动机及燃气轮机重大专项基础研究项目(J2019-I-0008-0008)

Analysis and verification of nonlinear vibrations of fiber-reinforced composite cylindrical shells in thermal environment

  • LI Hui ,
  • LYU Haiyu ,
  • ZOU Zeyu ,
  • LUO Zhong ,
  • MA Hui ,
  • HAN Qingkai
Expand
  • 1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China;
    2. Analysis and verification of nonlinear vibrations of fiber-reinforced composite cylindrical shells in thermal environment

Received date: 2021-04-08

  Revised date: 2021-04-26

  Online published: 2021-05-21

Supported by

National Natural Science Foundation of China (52175079); The Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (6142905192512); The Fundamental Research Funds for the Central Universities of China (N2103026); The China Postdoctoral Science Foundation (2020M680990); The Major Projects of Aero-Engines and Gas Turbines (J2019-I-0008-0008)

摘要

对热环境下纤维增强复合材料圆柱壳的非线性振动开展了理论分析与测试验证研究。首先, 基于应变能密度函数法和复模量法, 结合多项式拟合技术提出了考虑振幅和温度依赖性的该类型复合材料非线性拉伸模量、剪切模量和损耗因子的显式表达式。接着, 结合Love壳体理论、能量法和von-Kármán非线性应变-位移关系建立了结构的解析模型, 并推导了其在均匀热环境中的振动微分方程, 实现了非线性共振频率、阻尼比和振动响应的求解。最后, 利用自行搭建的热振实验系统对CF120碳纤维/环氧圆柱壳试件开展了测试, 验证了提出的模型及其分析结果的正确性。

本文引用格式

李晖 , 吕海宇 , 邹泽煜 , 罗忠 , 马辉 , 韩清凯 . 热环境下纤维增强复合材料圆柱壳非线性振动分析与验证[J]. 航空学报, 2022 , 43(9) : 425642 -425642 . DOI: 10.7527/S1000-6893.2021.25642

Abstract

Theoretical analysis and experimental verification of the nonlinear vibration characteristics of the fiber reinforced composite cylindrical shell in the thermal environment are conducted in this paper. Firstly, based on the strain energy density function method, complex modulus principle and polynomial fitting technique, explicit expressions of the nonlinear tensile moduli, shear moduli and loss factors of this type of composite material are proposed with consideration of amplitude and temperature dependence. Then, on the basis of the Love's shell theory, energy method and von-Kármán nonlinear strain-displacement relationship, an analytical model of the structure is established, and differential equations for vibration of the structure in the uniform thermal environment are derived, so as to solve the nonlinear resonant frequencies, damping ratios, and resonant responses of the structure. Finally, specimens of the CF120 carbon/epoxy composite cylindrical shell were tested based on a self-built thermal vibration experimental system, verifying the correctness of the model proposed as well as its analysis results.

参考文献

[1] LIU Q, REN J T, JIANG J S, et al. Nonlinear thermal vibration characteristic analysis of composite thin-cylindrical shells[J]. Journal of Mechanical Strength, 2006, 28(5): 643-648 (in Chinese). 刘芹, 任建亭, 姜节胜, 等. 复合材料薄壁圆柱壳热振动特性分析[J]. 机械强度, 2006, 28(5): 643-648.
[2] LUO Z, ZHU Y P, HAN Q K, et al. Structure size interval of similar test model of the laminated composite thin-wall short cylinder shell[J]. Journal of Mechanical Engineering, 2015, 51(17): 43-51 (in Chinese). 罗忠, 朱云鹏, 韩清凯, 等. 复合材料层合薄壁短圆柱壳动力学相似模型几何适用区间确定方法[J]. 机械工程学报, 2015, 51(17): 43-51.
[3] ZHANG Y F, WANG Y Q, WEN B C. Internal resonance of axially moving laminated thin cylindrical shells[J]. Journal of Vibration and Shock, 2015, 34(22): 82-86 (in Chinese). 张宇飞, 王延庆, 闻邦椿. 轴向运动层合薄壁圆柱壳内共振的数值分析[J]. 振动与冲击, 2015, 34(22): 82-86.
[4] WANG J K, WANG H. Stability of thin circular cylindrical shells composed of composite materials[J]. Acta Aeronautica et Astronautica Sinica, 1991, 12(12): 598-605 (in Chinese). 王俊奎, 王虎. 复合材料薄壁圆柱壳体的稳定性[J]. 航空学报, 1991, 12(12): 598-605.
[5] SONG X Y. Nonlinear vibration characteristics of laminated thin-walled cylindrical shell[D]. Dalian: Dalian University of Technology, 2016 (in Chinese). 宋旭圆. 层合薄壁圆柱壳结构的非线性振动特性研究[D]. 大连: 大连理工大学, 2016.
[6] LI H, LV H Y, LI Z L, et al. Forced vibration responses of fiber reinforced resin composite thin cylindrical shell in thermal environment[J]. Acta Materiae Compositae Sinica, 2020, 37(2): 382-389 (in Chinese). 李晖, 吕海宇, 李则霖, 等. 热环境下纤维增强树脂复合薄壁圆柱壳的强迫振动响应[J]. 复合材料学报, 2020, 37(2): 382-389.
[7] IU V P, CHIA C Y. Effect of transverse shear on nonlinear vibration and postbuckling of anti-symmetric cross-ply imperfect cylindrical shells[J]. International Journal of Mechanical Sciences, 1988, 30(10): 705-718.
[8] IU V P, CHIA C Y. Non-linear vibration and postbuckling of unsymmetric cross-ply circular cylindrical shells[J]. International Journal of Solids and Structures, 1988, 24(2): 195-210.
[9] HE J G, HU X C, LI S N, et al. A finite element analysis of nonlinear instability for laminated composite cylindrical shells with longitudinal stiffeners and transverse frames[J]. Acta Aeronautica et Astronautica Sinica, 1989, 10(6): 246-253 (in Chinese). 何建国, 胡训传, 李松年, 等. 复合材料加筋圆柱壳稳定性的非线性有限元分析[J]. 航空学报, 1989, 10(6): 246-253.
[10] LAKIS A A, SELMANE A, TOLEDANO A. Non-linear free vibration analysis of laminated orthotropic cylindrical shells[J]. International Journal of Mechanical Sciences, 1998, 40(1): 27-49.
[11] AMABILI M, REDDY J N. A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells[J]. International Journal of Non-Linear Mechanics, 2010, 45(4): 409-418.
[12] AMABILI M. Nonlinear vibrations of laminated circular cylindrical shells: Comparison of different shell theories[J]. Composite Structures, 2011, 94(1): 207-220.
[13] AMABILI M. Internal resonances in non-linear vibrations of a laminated circular cylindrical shell[J]. Nonlinear Dynamics, 2012, 69(3): 755-770.
[14] ZHANG Y, YANG J, SUN W, et al. A nonlinear analytical formula for forced vibration analysis of the hard-coating cylindrical shell based on the strain energy density principle[J]. Aerospace Science and Technology, 2019, 92: 326-336.
[15] LI H, LV H Y, SUN H, et al. Nonlinear vibrations of fiber-reinforced composite cylindrical shells with bolt loosening boundary conditions[J]. Journal of Sound and Vibration, 2021, 496: 115935.
[16] MALEKZADEH P, HEYDARPOUR Y. Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment[J]. Composite Structures, 2012, 94(9): 2971-2981.
[17] ZHANG L W, SONG Z G, QIAO P Z, et al. Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 889-903.
[18] YANG S W, ZHANG W, MAO J J. Nonlinear vibrations of carbon fiber reinforced polymer laminated cylindrical shell under non-normal boundary conditions with 1: 2 internal resonance[J]. European Journal of Mechanics-A/Solids, 2019, 74: 317-336.
[19] SHENG G G, WANG X, FU G, et al. The nonlinear vibrations of functionally graded cylindrical shells surrounded by an elastic foundation[J]. Nonlinear Dynamics, 2014, 78(2): 1421-1434.
[20] SHEN H S, XIANG Y. Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 213-216: 196-205.
[21] SHEN H S, XIANG Y, FAN Y. Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical shells in thermal environments[J]. Composite Structures, 2017, 182: 447-456.
[22] LI H, XUE P C, GUAN Z W, et al. A new nonlinear vibration model of fiber-reinforced composite thin plate with amplitude-dependent property[J]. Nonlinear Dynamics, 2018, 94(3): 2219-2241.
[23] VENKATACHARI A, NATARAJAN S, HABOUSSI M, et al. Environmental effects on the free vibration of curvilinear fibre composite laminates with cutouts[J]. Composites Part B: Engineering, 2016, 88: 131-138.
[24] LI H, SUN W, XU Z. Vibration test and analysis method of fiber reinforced composite sheet[M]. Beijing: China Machine Press, 2020: 78-79 (in Chinese). 李晖, 孙伟, 许卓. 纤维增强复合薄板振动测试与分析方法[M]. 北京: 机械工业出版社, 2020: 78-79.
[25] LI H, WU T F, GAO Z J, et al. An iterative method for identification of temperature and amplitude dependent material parameters of fiber-reinforced polymer composites[J]. International Journal of Mechanical Sciences, 2020, 184: 105818.
文章导航

/