材料工程与机械制造

碳纳米管/聚酰亚胺泡沫的制备及其吸波性能

  • 王跃毅 ,
  • 鄢定祥 ,
  • 李忠明
展开
  • 1. 四川大学 空天科学与工程学院, 成都 610065;
    2. 四川大学 高分子科学与工程学院, 成都 610065

收稿日期: 2021-03-18

  修回日期: 2021-05-21

  网络出版日期: 2021-05-21

基金资助

国家自然科学基金(21704070,21878194,51721091)

Preparation of carbon nanotubes/polyimide foam and its microwave absorption properties

  • WANG Yueyi ,
  • YAN Dingxiang ,
  • LI Zhongming
Expand
  • 1. School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China;
    2. College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China

Received date: 2021-03-18

  Revised date: 2021-05-21

  Online published: 2021-05-21

Supported by

National Natural Science Foundation of China (21704070, 21878194, 51721091)

摘要

轻质耐高温的吸波泡沫在航空航天隐身技术领域具有广泛的应用。制备具有优异吸波性能的聚酰亚胺泡沫在航空航天领域具有极大的应用潜力。通过冷冻干燥水溶性聚酰亚胺酸溶液和碳纳米管分散液,成功制备了轻质碳纳米管/聚酰亚胺泡沫。由于碳纳米管良好分散性及其特有的多孔结构,所制备泡沫表现出优异的吸波性能,其最大反射损耗达到-44.7 dB,有效吸波带宽,即反射损耗值≤-10 dB的波段达7.4 GHz,同时,RL≤-5 dB的波段可以覆盖整个X和Ku波段,表现出较好的应用潜力。

本文引用格式

王跃毅 , 鄢定祥 , 李忠明 . 碳纳米管/聚酰亚胺泡沫的制备及其吸波性能[J]. 航空学报, 2022 , 43(7) : 425531 -425531 . DOI: 10.7527/S1000-6893.2021.25531

Abstract

Lightweight and heat resistant foam with broadband Microwave Absorption(MA) has attracted great attention in the field of aerospace stealth technology, and the development of MA foam based on space-durable polyimide(PI) is very promising. Herein, a Carbon Nanotube(CNT)/PI foam is developed by freezing and drying water-soluble polyamic acid and CNT dispersion with the aid of polyvinyl pyrrolidone. The resulted CNT/PI foam exhibits impressive MA performance, with the minimum reflection loss reaching -44.7 dB and effective absorption bandwidth reaching 7.4 GHz. It was found that the band of RL ≤ -5 dB can cover X and Ku bands simultaneously, which demonstrates that the foam manufactured can meet the requirements of actual application.

参考文献

[1] 罗发,周万城,焦桓.高温吸波材料研究现状[J]. 2002, 1(1):8-11. LUO F, ZHOU W C, JIAO H. Current study of high temperature radar absorbing materials[J]. Aerospace Materials&Technology, 2002, 1(1):8-11(in Chinese).
[2] 姚琪,张振林,宫剑.耐高温/隐身/透波一体化天线罩材料的研究进展[J].当代化工研究, 2018, 1(12):6-7. YAO Q, ZHANG Z L, GONG J. Research progress of high temperature resistant/stealth/wave transmitting integrated radome materials[J]. Modern Chemical Research, 2018, 1(12):6-7(in Chinese).
[3] 李萍,陈绍杰,朱珊.隐身复合材料的研究和发展[J].飞机设计, 1994, 1(1):31-36. LI P, CHEN S J, ZHU S. Research and development of stealth composites[J]. Aircraft Design, 1994, 1(1):31-36(in Chinese).
[4] 郭霄,杨青真,文振华,等.吸波材料脱落对球面收敛喷管电磁散射特性的影响[J].航空学报, 2020,42(6):224466. GUO X, YANG Q Z, WEN Z H, et al. Research on the influence of RAM abscission on the electromagnetic scattering characteristic of cavity[J]. Acta Aeronautica et Astronautica Sinica, 2020,42(6):224466(in Chinese).
[5] 丁冬海,罗发,周万城.高温雷达吸波材料研究现状与展望[J].无机材料学报, 2014, 29(5):461-469. DING D H, LUO F, ZHOU W C. Research status and outlook of high temperature radar absorbing materials[J]. Journal of Inorganic Materials, 2014, 29(5):461-469(in Chinese).
[6] LIU Y, HE D, DUBRUNFAUT O, et al. GO-CNTs hybrids reinforced epoxy composites with porous structure as microwave absorbers[J]. Composites Science and Technology, 2020, 200(12):108450.
[7] KONG L, YIN X W, YUAN X Y, et al. Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly (dimethyl siloxane) composites[J]. Carbon, 2014, 73(7):185-193.
[8] YUAN H, XIONG Y L, SHEN Q, et al. Synthesis and electromagnetic absorbing performances of CNTs/PMMA laminated nanocomposite foams in X-band[J]. Composites Part A:Applied Science and Manufacturing, 2018, 107(4):334-341.
[9] GUO C, ITOH K, SUN D, et al. Carbon nanotube/polysiloxane foams with tunable absorption bands for electromagnetic wave shielding[J]. ACS Applied Nano Materials, 2020, 3(6):5944-5954.
[10] GOUZMAN I, GROSSMAN E, VERKER R, et al. Advances in polyimide-based materials for space applications[J]. Advanced Materials, 2019, 31(18):e1807738.
[11] WILLIAMS J C, NGUYEN B N, MCCORKLE L, et al. Highly porous, rigid-rod polyamide aerogels with superior mechanical properties and unusually high thermal conductivity[J]. ACS Applied Materials&Interfaces, 2017, 9(2):1801-1809.
[12] LI Y, PEI X, SHEN B, et al. Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding[J]. RSC Advance, 2015, 5(31):24342-24351.
[13] GU W H, WANG G H, ZHOU M, et al. Polyimide-based foams:fabrication and multifunctional applications[J]. ACS Applied Materials&Interfaces, 2020, 12(43):48246-48258.
[14] LIU J, ZHANG H B, XIE X, et al. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels[J]. Small, 2018, 14(45):1802479.
[15] DAI Y, WU X, LIU Z, et al. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption[J]. Composites Part B:Engineering, 2020, 200(11):108263.
[16] PU L, LI S, ZHANG Y, et al. Polyimide-based graphene composite foams with hierarchical impedance gradient for efficient electromagnetic absorption[J]. Journal of Materials Chemistry C, 2021, 200(6):108263.
[17] YIN L, CHEN T, LIU S, et al. Preparation and microwave-absorbing property of BaFe12O19 nanoparticles and BaFe12O19/Fe3C/CNTs composites[J]. RSC Advance, 2015, 5(111):91665-91669.
[18] ENDO M, TAKEUCHI K, HIRAOKA T, et al. Stacking nature of graphene layers in carbon nanotubes and nanofibres[J]. Journal of Physics&Chemistry of Solids, 1997, 58(11):1707-1712.
[19] LUONG N D, HIPPI U, KORHONEN J T, et al. Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization[J]. Polymer, 2011, 52(23):5237-5242.
[20] ZHAO H, CHENG Y, LV H, et al. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption[J]. Carbon, 2019, 142(2):245-253.
[21] CHEN Y, ZHANG H B, YANG Y B, et al. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding[J]. Advanced Functional Material, 2016, 26(3):447-455.
[22] 郑天亮,张璋,王轩,等.聚苯胺中空球的改性与电磁特性[J].航空学报, 2007, 28(6):1532-1536. ZHENG T L, ZHANG Z, WANG X, et al. Modifing of PANI hollow microspheres and electromagnetic property[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6):1532-1536(in Chinese).
[23] LV H, LIANG X, CHENG Y, et al. Coin-like alpha-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance[J]. ACS Applied Materials&Interfaces, 2015, 7(8):4744-4750.
[24] XU J J, LIU J W, CHE R C, et al. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells[J]. Nanoscale, 2014, 6(11):5782-5790.
[25] WANG Y Y, SUN W J, LIN H, et al. Steric stabilizer-based promotion of uniform polyaniline shell for enhanced electromagnetic wave absorption of carbon nanotube/polyaniline hybrids[J]. Composite Part B:Engineering, 2020, 199(10):108309.
[26] 李国显,王涛,薛海荣,等.石墨烯/Fe3O4复合材料的制备及电磁波吸收性能[J].航空学报, 2011, 32(9):1732-1739. LI G X, WANG T, XUE H R, et al. Synthesis of graphene/Fe3O4 composite materials and their electromagnetic wave absorption properties outlook of high temperature radar absorbing materials[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1732-1739(in Chinese).
[27] ZHANG X J, ZHU J Q, YIN P G, et al. Tunable high-performance microwave absorption of Co1-xS hollow spheres constructed by nanosheets within ultralow filler loading[J]. Advanced Functional Material, 2018, 28(49):1800761.
[28] HAN M, YIN X, KONG L, et al. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry A, 2014, 2(39):16403-16409.
[29] LV H L, ZHANG H Q, ZHAO J, et al. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures[J]. Nano Research, 2016, 9(6):1813-1822.
[30] KONG L, WANG C, YIN X W, et al. Electromagnetic wave absorption properties of a carbon nanotube modified by a tetrapyridinoporphyrazine interface layer[J]. Journal of Materials Chemistry C, 2017, 5(30):7479-7488.
[31] XU H L, YIN X W, FAN X M, et al. Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance[J]. Carbon, 2019, 148(8):421-429.
文章导航

/