论文

飞机力提示智能侧杆控制器设计方法

  • 许舒婷 ,
  • 谭文倩 ,
  • 屈香菊
展开
  • 1. 北京航空航天大学 航空科学与工程学院, 北京 100191;
    2. 北京航空航天大学 江西研究院, 南昌 330000

收稿日期: 2021-04-15

  修回日期: 2021-05-08

  网络出版日期: 2021-05-20

基金资助

航空科学基金(20185702003)

Design method of aircraft smart side-stick controller with force cue

  • XU Shuting ,
  • TAN Wenqian ,
  • QU Xiangju
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
    2. Jiangxi Research Institute of Beihang university, Nanchang 330000, China

Received date: 2021-04-15

  Revised date: 2021-05-08

  Online published: 2021-05-20

Supported by

Aeronautical Science Foundation of China(20185702003)

摘要

与传统侧杆控制器的作用不同,带力提示的智能侧杆控制器的附加功能是减缓和预防飞机在故障或边界状态下的人机不良耦合,以提高飞行安全性。飞机在故障或边界状态下,具有明显的飞行动力学特性突变的特点,飞机动力学特性突变会引起驾驶员操纵策略的变化。针对这些特点,研究其侧杆控制器设计的理论方法。通过分析飞机动力学特性突变引起的系统时变非线性及其在力提示下的驾驶员行为特点,建立了智能侧杆引导的人机系统模型。在此基础上,基于时变系统的频谱分析和人机系统的品质评价准则,提出了带力提示的智能侧杆控制器设计方法,并给出了详细的设计步骤。通过对飞机故障状态下的仿真,解释了力提示智能侧杆控制器减缓人机不良耦合的机理。仿真结果表明智能侧杆控制器在提高驾驶员控制精度的同时,减缓了人机不良耦合的趋势,从而验证了提出的设计方法的可行性和有效性。

本文引用格式

许舒婷 , 谭文倩 , 屈香菊 . 飞机力提示智能侧杆控制器设计方法[J]. 航空学报, 2021 , 42(8) : 525775 -525775 . DOI: 10.7527/S1000-6893.2021.25775

Abstract

The smart side-stick controller with force cue is different from the traditional one, as it has an additional function to mitigate and prevent adverse aircraft-pilot coupling when the aircraft falls in the presence of failures or is close to the envelope, contributing to improvement of flight safety. In the presence of failures or on the edge of the safe flight envelope, the aircraft dynamics are subject to sudden changes, which will then cause the change of human pilot control strategies. It is therefore needed to study the theoretical design method of the smart side-stick controller. A pilot-aircraft system model with the smart side-stick is developed based on an analysis of the time-varying and nonlinear characteristics of sudden changes in aircraft dynamics and the control behaviors of the human pilot with the force cue from the smart side-stick. Then, a design method of the smart side-stick controller with force cue is presented based on time-varying spectrum analysis and evaluation criteria of the pilot-aircraft system. The design procedures are given in detail. Simulation of the aircraft in failure offers an explanation to the mechanism of mitigation of unfavorable aircraft-pilot coupling with the smart side-stick controller with force cue. The simulation results indicate that the smart side-stick controller can not only improve pilot control accuracy, but also mitigate the trend of adverse aircraft-pilot coupling, thus demonstrating the feasibility and validity of the design method proposed.

参考文献

[1] LIM Y, GARDI A, SABATINI R, et al. Avionics human-machine interfaces and interactions for manned and unmanned aircraft[J]. Progress in Aerospace Sciences, 2018, 102:1-46.
[2] D'INTINO G, OLIVARI M, BVLTHOFF H H, et al. Haptic assistance for helicopter control based on pilot intent estimation[J]. Journal of Aerospace Information Systems, 2020, 17(4):193-203.
[3] ZIKMUND P, HORPATZKÁ M, DUBNICKY L, et al. Pilot-aircraft haptic feedback tests[J]. Aircraft Engineering and Aerospace Technology, 2020, 92(9):1407-1412.
[4] GIBSON J C, HESS R A. Stick and feel system design[R]. Neuilly Sur Seine:AGARD, 1997:34-36.
[5] MITCHELL D G, APONSO B L, KLYDE D H. Effects of cockpit lateral stick characteristics on handling qualities and pilot dynamics:NASA-CR-4443[R]. Washington, D.C.:NASA, 1992.
[6] GREENFIELD A, SAHASRABUDHE V. Side-stick force-feel parametric study of a cargo-class helicopter[C]//American Helicopter Society 67th Annual Forum,2011.
[7] HEGG J W, SMITH M P, YOUNT L. Sidestick controllers for advanced aircraft cockpits[C]//Proceedings IEEE/AIAA 11th Digital Avionics Systems Conference. Piscataway:IEEE Press, 1992:491-499.
[8] 李玉风, 王延刚, 屈香菊. 主动侧杆操纵的人机特性评价方法[J]. 飞行力学, 2008, 26(6):9-13. LI Y F, WANG Y G, QU X J. Method of the human-machine characteristic evaluation for the control of active side stick[J]. Flight Dynamics, 2008, 26(6):9-13(in Chinese).
[9] 许舒婷, 谭文倩, 孙立国, 等. 主动侧杆引导下的Ⅱ型驾驶员诱发振荡抑制[J]. 航空学报, 2018, 39(8):121861. XU S T, TAN W Q, SUN L G, et al. Using active side-stick to prevent category Ⅱ pilot-induced oscillations[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8):121861(in Chinese).
[10] TAN W Q, ZHANG W, QU X J. Analysis of APC characteristics of control mode switching induced by active side stick[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2012
[11] FU W, VAN PAASSEN M M, MULDER M. Developing active manipulators in aircraft flight control[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(8):1755-1767.
[12] KLYDE D H, MCRUER D. Smart-cue and smart-gain concepts to alleviate loss of control[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(5):1409-1417.
[13] VAN BAELEN D, ELLERBROEK J,VAN PAASSEN M M, et al. Design of a haptic feedback system for flight envelope protection[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(4):700-714.
[14] FELLAH K, GUIATNI M. Tactile display design for flight envelope protection and situational awareness[J]. IEEE Transactions on Haptics, 2019, 12(1):87-98.
[15] FU W, VAN PAASSEN M M, MULDER M. Human threshold model for perceiving changes in system dynamics[J]. IEEE Transactions on Human-Machine Systems, 2020, 50(5):444-453.
[16] ACKERMAN K A, TALLEUR D A, CARBONARI R S, et al. Automation situation awareness display for a flight envelope protection system[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(4):964-980.
[17] 许舒婷. 带智能操纵杆的人机系统建模及评价方法研究[D].北京:北京航空航天大学, 2019:35-37. XU S T. Modeling and evaluating the human-pilot aircraft system with smart inceptor[D]. Beijing:Beihang University, 2019:35-37(in Chinese).
[18] XU S T, TAN W Q, QU X J. Modeling human pilot behavior for aircraft with a smart inceptor[J]. IEEE Transactions on Human-Machine Systems, 2019, 49(6):661-671.
[19] KLYDE D H, LAMPTON A K, RICHARDS N D, et al. Flight-test evaluation of a loss-of-control mitigation system[J]. Journal of Guidance, Control, and Dynamics, 2015, 40(4):981-997.
[20] STEPANYAN V, KRISHNAKUMAR K, DORAIS G, et al. Loss-of-control mitigation via predictive cuing[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(4):831-846.
[21] BELCASTRO C M, FOSTER J V, SHAH G H, et al. Aircraft loss of control problem analysis and research toward a holistic solution[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(4):733-775.
[22] BACHELDER E N, HESS R A, GODFROY-COOPER M, et al. Linking the pilot structural model and pilot workload[C]//2018 AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2018
[23] XU S T, TAN W Q, EFREMOV A V, et al. Review of control models for human pilot behavior[J]. Annual Reviews in Control, 2017, 44:274-291.
[24] GAWTHROP P, LORAM I, LAKIE M, et al. Intermittent control:a computational theory of human control[J]. Biological Cybernetics, 2011, 104(1-2):31-51.
[25] HANDLEY P M, HESS R A, ROBINSON S K. Descriptive pilot model for the NASA simplified aid for extravehicular activity rescue[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(2):515-518.
[26] HOSMAN R, ADVANI S. Design and evaluation of the objective motion cueing test and criterion[J]. The Aeronautical Journal, 2016, 120(1227):873-891.
[27] PAVEL M D, MASARATI P, GENNARETTI M, et al. Practices to identify and preclude adverse Aircraft-and-Rotorcraft-Pilot Couplings-A design perspective[J]. Progress in Aerospace Sciences, 2015, 76:55-89.
[28] PAVEL M D, JUMP M, DANG-VU B, et al. Adverse rotorcraft pilot couplings-Past, present and future challenges[J]. Progress in Aerospace Sciences, 2013, 62:1-51.
[29] HESS R A. Modeling human pilot adaptation to flight control anomalies and changing task demands[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(3):655-666.
[30] CAMERON N, WHITE M D, CUNLIFFE C, et al. Further assessment of a scalogram-based PIO metric using university of Liverpool tilt rotor simulation data[C]//2018 AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2018:1017.
[31] KLYDE D H, SCHULZE P C, MELLO R S F D, et al. Assessment of a scalogram-based pilot-induced oscillation metric with flight-test and simulation data[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(11):2058-2072.
[32] LAMPTON A K, KLYDE D H, LEE D, et al. Development of the SAFE-cue system component mechanizations for loss of control mitigation[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2014
[33] KLYDE D H, SCHULZE P C, MELLO R S, et al. Assessment of a scalogram-based PIO metric with flight test data[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2017
[34] 张程, 谭文倩, 屈香菊, 等. 一种基于小波分析的时变飞行品质准则[J]. 飞行力学, 2019, 37(2):7-11. ZHANG C, TAN W Q, QU X J, et al. A time-varying flying qualities criterion based on wavelet analysis[J]. Flight Dynamics, 2019, 37(2):7-11(in Chinese).
[35] 谭文倩, 屈香菊. 人机系统与飞行品质[M]. 北京:北京航空航天大学出版社, 2020:187-190. TAN W Q, QU X J. Man-machine system and flying quality[M]. Beijing:Beijing University Press, 2020:187-190(in Chinese).
[36] XU S T, TAN W Q, QU X J, et al. Prediction of nonlinear pilot-induced oscillation using an intelligent human pilot model[J]. Chinese Journal of Aeronautics, 2019, 32(12):2592-2611.
文章导航

/