国家数值风洞(NNW)进展及应用专栏

NNW-TopViz流场可视分析系统

  • 陈呈 ,
  • 赵丹 ,
  • 王岳青 ,
  • 邓亮 ,
  • 杨超 ,
  • 苏铖宇 ,
  • 王昉
展开
  • 1. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000;
    2. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    3. 西南科技大学 计算机科学与技术学院, 绵阳 621000

收稿日期: 2021-03-30

  修回日期: 2021-05-06

  网络出版日期: 2021-05-20

基金资助

国家数值风洞工程

NNW-TopViz visualization analysis system for flow field

  • CHEN Cheng ,
  • ZHAO Dan ,
  • WANG Yueqing ,
  • DENG Liang ,
  • YANG Chao ,
  • SU Chengyu ,
  • WANG Fang
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621000, China

Received date: 2021-03-30

  Revised date: 2021-05-06

  Online published: 2021-05-20

Supported by

National Numerical Windtunnel Project

摘要

流场可视化技术采用图形图像直观地表现CFD数值模拟的计算结果,使用户能够方便地对这些数据进行分析、比较和研究。然而,CFD数值模拟的流动复杂,其产生的流场数据规模巨大、数据类型复杂、特征提取困难,传统的串行可视化软件效率低、交互手段单一,难以满足数据分析的需求。国家数值风洞(NNW)工程研制了一套流场数据处理可视化软件系统(NNW-TopViz,简称TopViz),具有对流场数据处理与特征提取、几何图形绘制等可视化与交互功能。根据可视分析效率需求,TopViz实现了线程并行,在多核计算环境下有效提高了可视化计算和交互效率;针对流场特征提取困难、常规方法效率低的问题,TopViz实现了基于卷积神经网络的流场旋涡特征提取方法,提升了特征提取准确率和效率;为提高软件交互效率并提供便捷的交互方式和体验,基于头戴式显示设备和体感控制器构建沉浸式虚拟显示与交互平台,TopViz实现了手势和眼球凝视2种交互方法,提供沉浸式环境下多视图、多角度流场探测方式。

本文引用格式

陈呈 , 赵丹 , 王岳青 , 邓亮 , 杨超 , 苏铖宇 , 王昉 . NNW-TopViz流场可视分析系统[J]. 航空学报, 2021 , 42(9) : 625747 -625747 . DOI: 10.7527/S1000-6893.2021.25747

Abstract

The flow field visualization technology visually displays the abstract calculation results of CFD numerical simulation in the form of graphic images, enabling users to easily analyze, compare, and study the results.However, the complex flow of CFD numerical simulation, huge generated data and complex data type make it difficult to conduct feature extraction, and thus difficult to achieve efficient visualization. The National Numerical Windtunnel (NNW) Project develops a field visualization software system, NNW-TopViz (TopViz for short), which has the function of field data processing, feature extraction, geometric drawing and human interaction. According to the efficiency requirements, TopViz deploys thread level parallelism to enhance the visualization computing. Due to the difficulties in flow field feature extraction and the low efficiency of conventional methods, TopViz implements the convolutional neural network-based flow field vortex feature extraction method, which improves the accuracy and efficiency of feature extraction. In order to improve software interaction efficiency and provide convenient interaction mode and experience, an immersive virtual display and interaction platform is built based on head-mounted display device and motion-sensing controller. TopViz realizes two interaction methods, namely gesture and eye gaze, and provides a multi-view and multi-angle flow field detection method in an immersive environment.

参考文献

[1] WANG Y X, ZHANG L L, LIU W, et al. Efficient parallel implementation of large scale 3D structured grid CFD applications on the Tianhe-1A supercomputer[J]. Computers & Fluids, 2013, 80:244-250.
[2] ANDERSON J D. 计算流体力学基础及其应用[M]. 吴颂平, 刘赵淼, 译. 北京:机械工业出版社, 2007. ANDERSON J D. Computational fluid dynamics[M]. WU S P, LIU Z M, translated. Beijing:China Machine Press, 2007(in Chinese).
[3] 吴颖川, 贺元元, 贺伟, 等. 吸气式高超声速飞行器机体推进一体化技术研究进展[J]. 航空学报, 2015, 36(1):245-260. WU Y C, HE Y Y, HE W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260(in Chinese).
[4] 王松, 王海洋, 吴亚东, 等. 大规模CFD流场可视化分析系统的应用[J]. 航空动力学报, 2017, 32(5):1138-1147. WANG S, WANG H Y, WU Y D, et al. Application of large-scale CFD flowfield visualization analysis system[J]. Journal of Aerospace Power, 2017, 32(5):1138-1147(in Chinese).
[5] 李思昆, 蔡勋,王文珂,等.大规模流场科学计算可视化[M]. 北京:国防工业出版社, 2013. LI S K, CAI X, WANG W K, et al. Visualization of scientific computation of large-scale flow fields[M]. Beijing:National Defense Industry Press, 2013.
[6] 俞宏峰.大规模科学数据可视化[J].中国计算机学会通讯,2012,8(9):29-36. YU H F. Visualization for large scale scientific data[J]. China Computer Federation Communication, 2012, 8(9):29-36(in Chinese)
[7] VisIt[EB/OL].[2021-03-10]. http://wci.llnl.gov/simulation/computer-codes/visit.
[8] ParaView[EB/OL].[2021-03-10].http://www.paraview.org.
[9] 陈莉, 竹岛由里子, 藤代一成, 等. 大规模数据场的并行可视化[J]. 浙江大学学报(理学版), 2001, 28(2):222-226. CHEN L, TAKESHIMA Y, FUJISHIRO I, et al. Parallel visualization for large-scale datasets[J]. Journal of Zhejiang University (Sciences Edition), 2001, 28(2):222-226(in Chinese).
[10] CAO Y, MO Z Y, AI Z W, et al. An efficient and visually accurate multi-field visualization framework for high-resolution climate data[J]. Journal of Visualization, 2016, 19(3):447-460.
[11] FANG W, DENG L, ZHAO D, et al. Acceleration of PDE-based FTLE calculations on Intel multi-core and many-core architectures[C]//20154th International Conference on Computer Science and Network Technology (ICCSNT). Piscataway:IEEE Press, 2015:178-183.
[12] CHEN L, FUJISHIRO I. Optimizing parallel performance of streamline visualization for large distributed flow datasets[C]//2008 IEEE Pacific Visualization Symposium. Piscataway:IEEE Press, 2008:87-94.
[13] MAXIMO A, RIBEIRO S, BENTES C, et al. Memory efficient GPU-based ray casting for unstructured volume rendering[C]//IEEE/EG International Symposium on Volume Graphics. Piscataway:IEEE Press, 2008:155-162.
[14] CAMP D, GARTH C, CHILDS H, et al. Streamline integration using MPI-hybrid parallelism on a large multicore architecture[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(11):1702-1713.
[15] GUPTA S, GIRSHICK R, ARBELáEZ P, et al. Learning rich features from RGB-D images for object detection and segmentation[M]//Computer Vision-ECCV 2014. Berlin:Springer, 2014:345-360.
[16] STRÖFER C A M, WU J L, XIAO H, et al. Data-driven, physics-based feature extraction from fluid flow fields[J]. Communications in Computational Physics, 2018, 25(3):625-650.
[17] FRANZ K, ROSCHER R, MILIOTO A, et al. Ocean eddy identification and tracking using neural networks[C]//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway:IEEE Press, 2018:6887-6890.
[18] HOLDEN C, KEANE A. Visualization methodologies in aircraft design[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA, 2004.
[19] BRANDON J M, HALLISSY J B, BROWN P W, et al. In-flight flow visualization results of the F-106B with a vortex flap[C]//RTO AVT Symposium on Advanced Flow Management:Part A-Vortex Flows and High Angle of Attack for Military Vehicles, 2001.
[20] KLEIN T, GUéNIAT F, PASTUR L, et al. A design study of direct-touch interaction for exploratory 3D scientific visualization[J]. Computer Graphics Forum, 2012, 31(3pt3):1225-1234.
[21] TONG X, EDWARDS J, CHEN C M, et al. View-dependent streamline deformation and exploration[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(7):1788-1801.
[22] GU Y, WANG C L. TransGraph:Hierarchical exploration of transition relationships in time-varying volumetric data[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12):2015-2024.
[23] 赵钟, 张来平, 何磊, 等. 适用于任意网格的大规模并行CFD计算框架PHengLEI[J]. 计算机学报, 2019, 42(11):2368-2383. ZHAO Z, ZHANG L P, HE L, et al. PHengLEI:A large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers, 2019, 42(11):2368-2383(in Chinese).
[24] DENG L, WANG Y Q, LIU Y, et al. A CNN-based vortex identification method[J]. Journal of Visualization, 2019, 22(1):65-78.
[25] WANG Y Q, DENG L, YANG Z G, et al. A rapid vortex identification method using fully convolutional segmentation network[J]. The Visual Computer, 2021, 37(2):261-273.
[26] DENG L, WANG Y Q, CHEN C, et al. A clustering-based approach to vortex extraction[J]. Journal of Visualization, 2020, 23(3):459-474.
[27] 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J/OL]. 中国科学:技术科学,(2021-04-28)[2021-05-20]. https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J/OL]. Scientia Sinica Technologica, (2021-04-28)[2021-05-20].https://kns.cnki.net/kcms/detail/11.5844.TH.20210428.0914.006.html (in Chinese).
文章导航

/