在流体力学数值模拟过程中存在着多种来源的不确定因素,科学、定量地描述这些因素对模拟结果的影响对模型确认、工业产品设计优化和性能评估等过程十分重要。数值离散、模型选择和模型预测偏差是模拟过程中3种重要的不确定性来源,为将这3种不确定性因素对模拟目标量的影响统一考虑,发展了考虑数值离散误差的贝叶斯模型平均方法。首先,通过对数值离散解和网格尺度进行拟合完成数值离散误差估计,得到每个备选模型真实解的置信区间。然后,通过嵌套方法和条件优化算法,结合贝叶斯模型平均方法构建目标量的概率盒,定义目标变量累积分布函数的上、下限,以此分析其置信区间。最后,针对NACA0012低速绕流和CHN-T1跨声速绕流问题,给出了同时考虑上述3种不确定性因素之后升、阻力系数的置信区间分析示例。
Various sources of uncertainty exist in numerical simulations of fluid mechanics. Characterization of the effects induced by uncertain factors on numerical results scientifically and quantitatively is extremely important for model validation, design, optimization and performance assessment processes of relevant products. Discretization errors, model selection and model prediction bias are three significant sources of uncertainties in numerical simulations. To take the three uncertain factors into account simultaneously, an improved Bayesian model averaging approach is proposed in this paper. The new approach begins with discretization error estimation, using curve fits between numerical predictions and grid scale to obtain the confidence interval of exact solutions to each model in possible model sets. The nested loop and conditional optimization algorithm combined with the traditional Bayesian model averaging approach are then used to construct the probability box for quantity-of-interest. Bounds of cumulative distribution function are then used for confidence interval estimation. The new approach is applied in the simulation of the low speed flow over NACA0012 airfoil and the transonic flow over CHN-T1, and the confidence intervals of the lift and drag coefficients are estimated.
[1] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J/OL]. 中国科学:技术科学, (2021-04-28)[2021-05-09]. https://kns.cnki.net/kcms/detail/11.5844.TH.202104-28.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese National Numerical Wind Tunnel Project[J/OL]. Scientia Sinica Technologica, (2021-04-28)[2021-05-09]. https://kns.cnki.net/kcms/detail/11.5844.TH.202104-28.0914.006.html (in Chinese).
[2] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-20414-218178[R]. Washington, D.C.:NASA, 2014.
[3] MOSLEH A, APOSTOLAKIS G. The assessment of probability distributions from expert opinions with an application to seismic fragility curves[J]. Risk Analysis, 1986, 6(4):447-461.
[4] RILEY M, GRANDHI R. A method for the quantification of model-form and parametric uncertainties in physics-based simulations[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2011.
[5] REINERT J M, APOSTOLAKIS G E. Including model uncertainty in risk-informed decision making[J]. Annals of Nuclear Energy, 2006, 33(4):354-369.
[6] PARK I, AMARCHINTA H K, GRANDHI R V. A Bayesian approach for quantification of model uncertainty[J]. Reliability Engineering & System Safety, 2010, 95(7):777-785.
[7] RILEY M E, GRANDHI R V. Quantification of model-form and predictive uncertainty for multi-physics simulation[J]. Computers & Structures, 2011, 89(11-12):1206-1213.
[8] PARK I, GRANDHI R V. Quantifying multiple types of uncertainty in physics-based simulation using Bayesian model averaging[J]. AIAA Journal, 2011, 49(5):1038-1045.
[9] EÇA L, HOEKSTRA M. A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies[J]. Journal of Computational Physics, 2014, 262:104-130.
[10] ROACHE P J. Verification and validation in computational science and engineering[J]. Computing in Science Engineering, 1998:107-240.
[11] ROY C J. Review of code and solution verification procedures for computational simulation[J]. Journal of Computational Physics, 2005, 205(1):131-156.
[12] ELDRED M, BICHON B. Second-order reliability formulations in DAKOTA/UQ[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2006.
[13] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1992.
[14] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[15] CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with MFlow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062.
[16] 赵辉, 胡星志, 张健, 等. 湍流模型系数不确定度对翼型绕流模拟的影响[J]. 航空学报, 2019, 40(6):122581. ZHAO H, HU X Z, ZHANG J, et al. Effects of uncertainty in turbulence model coefficients on flow over airfoil simulation[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):122581(in Chinese).
[17] 陈江涛, 赵娇, 章超, 等. 数值模拟方法对NASA CRM模型阻力预测的影响[J]. 航空学报, 2020, 41(4):123383. CHEN J T, ZHAO J, ZHANG C, et al. Effects of numerical simulation approaches on drag prediction of NASA CRM[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):123383(in Chinese).
[18] DISKIN B, THOMAS J L. Comparison of node-centered and cell-centered unstructured finite-volume discretizations:Inviscid fluxes[J]. AIAA Journal, 2011, 49(4):836-854.
[19] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions[C]//31st Aerospace Sciences Meeting. Reston:AIAA, 1993.
[20] LADSON C L. Effects of independent variation of Mach and Reynolds numbers on the low-speed aerodynamic characteristics of the NACA 0012 airfoil section:NASA TM 4074[R]. Washington, D.C.:NASA, 1988.
[21] 余永刚, 周铸, 黄江涛, 等. 单通道客机气动标模CHN-T1设计[J]. 空气动力学学报, 2018, 36(3):505-513. YU Y G, ZHOU Z, HUANG J T, et al. Aerodynamic design of a standard model CHN-T1 for single-aisle passenger aircraft[J]. Acta Aerodynamica Sinica, 2018, 36(3):505-513(in Chinese).
[22] 李强, 刘大伟, 许新, 等. CHN-T1标模2.4米风洞气动特性试验研究[J]. 空气动力学学报, 2019, 37(2):337-344. LI Q, LIU D W, XU X, et al. Experimental study of aerodynamic characterictics of CHN-T1 standard model in 2.4 m transonic wind tunnel[J]. Acta Aerodynamica Sinica, 2019, 37(2):337-344(in Chinese).
[23] 张耀冰, 唐静, 陈江涛, 等. 基于非结构混合网格的CHN-T1标模气动特性预测[J]. 空气动力学学报, 2019, 37(2):262-271. ZHANG Y B, TANG J, CHEN J T, et al. Aerodynamic characteristics prediction of CHN-T1 standard model with unstructured grid[J]. Acta Aerodynamica Sinica, 2019, 37(2):262-271(in Chinese).