材料工程与机械制造

含孔曲面自动铺丝轨迹规划算法

  • 冉庆波 ,
  • 肖鸿 ,
  • 杨富鸿 ,
  • 段玉岗
展开
  • 西安交通大学 机械工程学院,西安 710049

收稿日期: 2021-03-30

  修回日期: 2021-04-20

  网络出版日期: 2021-05-20

基金资助

国家自然科学基金(52075424)

Trajectory planning algorithm for automatic wire laying on perforated surface

  • RAN Qingbo ,
  • XIAO Hong ,
  • YANG Fuhong ,
  • DUAN Yugang
Expand
  • School of Mechanical Engineering, Xi 'an Jiaotong University, Xi 'an 710049, China

Received date: 2021-03-30

  Revised date: 2021-04-20

  Online published: 2021-05-20

Supported by

National Natural Science Foundation of China (52075424)

摘要

针对现有开孔轨迹规划算法存在无法适应复杂曲面、计算效率较低、无法解决复合材料大型开孔构件自动铺丝轨迹规划的问题,首先对含孔曲面进行拓扑重构,基于纤维丝轨迹与近似孔中心点的几何关系确定需进行裁剪的纤维丝轨迹,降低算法计算量;其次针对开孔边界交点问题提出基于孔边界的交点求解算法,在满足精度要求的前提下可大幅度提升算法效率;然后针对纤维丝轨迹孔边界处理问题提出基于切线法的延长算法,以高效进行开孔边界处理;最后通过软件开发实现了提出的算法,并在多种构件模型上进行铺丝路径规划和实际铺放实验,验证了算法的效率和正确性。

本文引用格式

冉庆波 , 肖鸿 , 杨富鸿 , 段玉岗 . 含孔曲面自动铺丝轨迹规划算法[J]. 航空学报, 2022 , 43(9) : 425602 -425602 . DOI: 10.7527/S1000-6893.2021.25602

Abstract

Existing hole trajectory planning algorithms cannot adapt to complex surfaces. With low computational efficiency, the methods cannot solve the problem of trajectory planning in automatic wire laying for large-scale composite components with openings. Firstly, the topology of the open hole surface is reconstructed based on the geometric relationship between the filament trajectory and the approximate hole center, and the trajectory of the fiber to be cut is determined to reduce the calculation amount of the algorithm. Secondly, for the intersection problem of the opening boundary, an intersection algorithm based on the opening boundary is proposed to improve the efficiency of the algorithm on the premise of meeting accuracy requirements Then, for the problem of filament trajectory hole boundary processing, an extension algorithm based on the tangent method is proposed to process the hole boundary efficiently Finally, the algorithm proposed in this paper is implemented by software development, and the efficiency and correctness of the algorithm are verified by wire laying path planning and actual laying experiments on a variety of component models.

参考文献

[1] DUAN M F, QIN T L, SHEN Y F, et al. Minimum gap layup algorithms for automatic fiber placement and manufacture of conic composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522423 (in Chinese). 段沐枫, 秦田亮, 沈裕峰, 等. 自动铺丝最小间隙路径规划与复合材料锥壳结构制造[J]. 航空学报, 2019, 40(2): 522423.
[2] SONG G L, WANG X F, ZHAO C, et al. Fiber placement trajectory planning and tows increase or decrease algorithm for revolution body[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 423704 (in Chinese). 宋桂林, 王显峰, 赵聪, 等. 规则回转体自动铺丝轨迹规划与丝束增减[J]. 航空学报, 2020, 41(11): 423704.
[3] ZHANG X H, ZHU Y X, ZHANG S Q, et al. Research progress on automated fiber placement technology[J]. Aeronautical Manufacturing Technology, 2018, 61(7): 54-61 (in Chinese). 张小辉, 朱玉祥, 张少秋, 等. 先进复合材料自动铺丝技术研究进展[J]. 航空制造技术, 2018, 61(7): 54-61.
[4] ANAND S K, CHELAKKOT R, SINGH S P. Beating to rotational transition of a clamped active ribbon-like filament[J]. Soft Matter, 2019, 15(39): 7926-7933.
[5] HYER M W, CHARETTE R F. Use of curvilinear fiber format in composite structure design[J]. AIAA Journal, 1991, 29(6): 1011-1015.
[6] REUSCHEL D, MATTHECK C. Three-dimensional fibre optimisation with computer aided internal optimisation[J]. The Aeronautical Journal, 1999, 103(1027): 415-420.
[7] LI J F, WANG X F, XIAO J. Research on trajectory planning method of automated tape laying and automated fiber placement for surfaces with holes[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1716-1723 (in Chinese). 李俊斐, 王显峰, 肖军. 开孔曲面自动铺放轨迹规划算法研究[J]. 航空学报, 2013, 34(7): 1716-1723.
[8] LIANG T, WANG X F. Fiber placement tool presetting strategy of complex free surface component[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(1): 115-119 (in Chinese). 梁涛, 王显峰. 关于复杂自由曲面类构件铺放成形对刀策略[J]. 南京航空航天大学学报, 2018, 50(1): 115-119.
[9] TAN R S, LIU M Y, ZHANG F, et al. Continuous path planning algorithm for carbon fiber composite material 3D printing[J]. Machinery Design & Manufacture, 2019(6): 1-4 (in Chinese). 谭瑞诗, 刘明尧, 张帆, 等. 碳纤维长纤3D打印的连续性路径规划算法[J]. 机械设计与制造, 2019(6): 1-4.
[10] QIU S D. A research on key technologies of large carbon fiber winding machine[J]. Machine Design & Research, 2017, 33(6): 63-66 (in Chinese). 裘升东. 大型碳纤维缠绕机关键技术的研究[J]. 机械设计与研究, 2017, 33(6): 63-66.
[11] WU C J, ZU L, LI S X, et al. Desigh of fiber placement path and buckling analysis of variable-stiffness composite laminates[J]. Fiber Reinforced Plastics/Composites, 2018(4): 5-10 (in Chinese). 吴尘瑾, 祖磊, 李书欣, 等. 变刚度复合材料层合板的纤维铺放路径设计及屈曲分析[J]. 玻璃钢/复合材料, 2018(4): 5-10.
[12] OLUFAYO O, SONGMENE V, KENNÉ J P, et al. Modelling for cost and productivity optimisation in sustainable manufacturing: A case of dry versus wet machining of mould steels[J]. International Journal of Production Research, 2021, 59(17): 5352-5371.
[13] FENG Y M, HE B L, JIANG M M, et al. Application of surface technology in manufacture and repair of die[J]. Hot Working Technology, 2018(4): 30-34 (in Chinese). 封亚明, 何柏林, 江明明, 等. 表面技术在模具制造和修复中的应用[J]. 热加工工艺, 2018(4): 30-34.
[14] WANG Z H, HUANG C B, LIN Z W. Triangle mesh shape segmentation based on detection of minima rule boundaries[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(1): 62-71 (in Chinese). 王泽昊, 黄常标, 林忠威. 三角网格模型的最小值边界分割[J]. 计算机辅助设计与图形学学报, 2017, 29(1): 62-71.
[15] LIU J Y, HOU B M. Efficient topological reconstruction of solids in STL format[J]. Journal of Engineering Graphics, 2003, 24(4): 34-39 (in Chinese). 刘金义, 侯宝明. STL格式实体的快速拓扑重建[J]. 工程图学学报, 2003, 24(4): 34-39.
[16] ZHANG X, LIAO W H, CHENG X S, et al. Study on topology reconstruction of STL file[J]. Mechanical Science and Technology, 2005, 24(9): 1093-1096 (in Chinese). 张翔, 廖文和, 程筱胜, 等. STL格式文件的拓扑重建方法研究[J]. 机械科学与技术, 2005, 24(9): 1093-1096.
[17] LI J F, WANG X F, XIAO J, et al. Trajectory planning of automated fiber placement for meshed surface in fixed angle algorithm[J]. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(9): 1410-1415 (in Chinese). 李俊斐, 王显峰, 肖军, 等. 网格化曲面的固定角度铺丝轨迹规划算法[J]. 计算机辅助设计与图形学学报, 2013, 25(9): 1410-1415.
[18] RIMMEL O, MAY D, MITSCHANG P. Impact of stitching on permeability and mechanical properties of preforms manufactured by dry fiber placement[J]. Polymer Composites, 2019, 40(4): 1631-1642.
[19] CHEVALIER P L, KASSAPOGLOU C, GVRDAL Z. Fatigue behavior of composite laminates with automated fiber placement induced defects-A review[J]. International Journal of Fatigue, 2020, 140: 105775.
[20] HUAN D J, XIAO J, LI Y. Trajectory generation algorithm for automated fiber placement with given fiber orientations of key points[J]. Journal of Nanjing University of Science and Technology, 2011, 35(3): 410-414 (in Chinese). 还大军, 肖军, 李勇. 给定点纤维方向的自动铺丝轨迹规划算法[J]. 南京理工大学学报, 2011, 35(3): 410-414.
[21] DUAN Y G, GE Y M, MENG Y, et al. Trajectory planning of fiber placement based on controlled angle and interval[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3475-3482 (in Chinese). 段玉岗, 葛衍明, 孟洋, 等. 基于角度与间距可控的纤维铺放轨迹规划[J]. 航空学报, 2015, 36(10): 3475-3482.
[22] DANG X D, XIAO J, HUAN D J. Implementation on fiber placement parallel equidistant path generation algorithm[J]. Journal of Wuhan University (Natural Science Edition), 2007, 53(5): 613-616 (in Chinese). 党旭丹, 肖军, 还大军. 自动铺丝平行等距轨迹规划算法实现[J]. 武汉大学学报(理学版), 2007, 53(5): 613-616.
文章导航

/