综述

虑及板坯几何和性能波动的薄壁件塑性成形数值模拟研究进展

  • 崔笑蕾 ,
  • 詹梅 ,
  • 高鹏飞 ,
  • 李锐 ,
  • 王贤贤 ,
  • 雷煜东 ,
  • 马飞 ,
  • 张洪瑞
展开
  • 1. 西北工业大学 材料科学与工程学院 陕西省高性能精密成形技术与装备重点实验室, 西安 710072;
    2. 陕西科技大学 机电工程学院, 西安 710016;
    3. 中国航天科技集团公司长征机械厂, 成都 610100

收稿日期: 2020-12-22

  修回日期: 2021-03-05

  网络出版日期: 2021-05-20

基金资助

国家自然科学基金(U1537203);国家杰出青年科学基金(51625505)

Advances in numerical simulation of plastic forming of thin-walled components considering blank geometry and performance fluctuation

  • CUI Xiaolei ,
  • ZHAN Mei ,
  • GAO Pengfei ,
  • LI Rui ,
  • WANG Xianxian ,
  • LEI Yudong ,
  • MA Fei ,
  • ZHANG Hongrui
Expand
  • 1. Shaanxi Key Laboratory of High-Performance Precision Forming Technology and Equipment, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
    2. School of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710016, China;
    3. Changzheng Machinery Factory, China Aerospace Science and Technology Corporation, Chengdu 610100, China

Received date: 2020-12-22

  Revised date: 2021-03-05

  Online published: 2021-05-20

Supported by

National Natural Science Foundation of China (U1537203); National Science Fund for Distinguished Young Scholars of China (51625505)

摘要

用于塑性成形的大型金属板坯存在不可避免的几何以及性能波动,其参数波动呈现很强的分散性和随机性,难以准确地定量表征。金属板坯几何和性能的波动会显著增加其在塑性成形中变形的复杂性,导致成形质量及成形极限下降,尤其是在具有强烈不均匀变形特征的薄壁件拉深、旋压等塑性成形中表现得更加明显,极大制约了大型薄壁件的精确成形。从板坯几何和性能波动的表征方法,虑及几何和性能波动的薄壁件塑性成形有限元模型建立、成形质量的影响规律、工艺参数设计及调控等方面综述了相关研究进展,并提出虑及几何和性能波动的薄壁件塑性成形研究中仍面临的难题与挑战,对发展薄壁件塑性成形理论与技术具有重要指导意义和参考价值。

本文引用格式

崔笑蕾 , 詹梅 , 高鹏飞 , 李锐 , 王贤贤 , 雷煜东 , 马飞 , 张洪瑞 . 虑及板坯几何和性能波动的薄壁件塑性成形数值模拟研究进展[J]. 航空学报, 2021 , 42(10) : 525145 -525145 . DOI: 10.7527/S1000-6893.2021.25145

Abstract

Thin-walled metal blanks have inevitable fluctuations in geometry and performance parameters. The fluctuating parameters show strong dispersion and randomness, and are difficult to be accurately and quantitatively characterized. The fluctuation significantly increases the complexity of deformation of metal blanks in plastic forming, resulting in a decrease in forming quality and forming limit, especially in stamping and spinning of think-walled components with the characteristics of strong non-uniform deformation. Precise forming of thin-walled metal components is thus greatly restricted. This paper summarizes relevant research on characterization of geometry and performance fluctuation of the blank, the finite element model for plastic forming of thin-walled components considering blank geometry and performance fluctuation, influencing laws of the forming quality, and design and control of the technological parameters. The key problems and challenges are also discussed, providing a fundamental guidance for plastic forming of thin-walled components.

参考文献

[1] ZHAN M, GUO K, YANG H. Advances and trends in plastic forming technologies for welded tubes[J]. Chinese Journal of Aeronautics, 2016, 29(2):305-315.
[2] 国家自然科学基金委员会工程与材料学部. 机械工程学科发展战略报告:2011-2020[M]. 北京:科学出版社, 2010. Department of Engineering and Materials Science, National Natural Science Foundation of China. Mechanical Engineering Discipline Development Strategy Report:2011-2020[M]. Beijing:Science Press, 2010(in Chinese).
[3] 詹梅, 李志欣, 高鹏飞, 等. 铝合金大型薄壁异型曲面封头旋压成形研究进展[J]. 机械工程学报, 2018, 54(9):86-96. ZHAN M, LI Z X, GAO P F, et al. Advances in spinning of aluminum alloy large-sized thin-walled and special-curved surface head[J]. Journal of Mechanical Engineering, 2018, 54(9):86-96(in Chinese).
[4] 吴卷, 詹梅, 蒋华兵, 等. 一种改进的Lemaitre韧性断裂准则及其在旋压成形中的应用[J]. 航空学报, 2011, 32(7):1309-1317. WU J, ZHAN M, JIANG H, et al. A modified lemaitre ductile fracture criterion and its application to spinning forming[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1309-1317(in Chinese).
[5] 李勇, 李东升, 李小强. 大型复杂壁板构件塑性成形技术研究与应用进展[J]. 航空制造技术, 2020, 63(21):36-45, 53. LI Y, LI D S, LI X Q. A review of plastic forming technologies and applications for large and complex-shaped panels[J]. Aeronautical Manufacturing Technology, 2020, 63(21):36-45, 53(in Chinese).
[6] 李奎, 郎利辉, 吴磊, 等. 锥形薄壁零件多道次充液成形方法[J]. 塑性工程学报, 2016, 23(4):36-41. LI K, LANG L H, WU L, et al. Multi-stage hydroforming method for conical thin-walled parts[J]. Journal of Plasticity Engineering, 2016, 23(4):36-41(in Chinese).
[7] WANG X X, GAO P F, ZHAN M, et al. Development of microstructural inhomogeneity in multi-pass flow forming of TA15 alloy cylindrical parts[J]. Chinese Journal of Aeronautics, 2020, 33(7):2088-2097.
[8] 宋国桥. 全自动内高压成形生产线关键影响因素[J]. 锻压装备与制造技术, 2020, 55(5):24-26. SONG G Q. Key influencing factors of fully automatic internal high pressure forming production line[J]. China Metal forming Equipment & Manufacturing Technology, 2020, 55(5):24-26(in Chinese).
[9] LIU X L, CAO J G, HUANG S X, et al. Experimental and numerical prediction and comprehensive compensation of springback in cold roll forming of UHSS[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(3-4):1-15.
[10] 周霞, 文冬, 沈梦祺, 等. AZ31镁合金板热成形中的屈服和损伤:本构实现与数值分析[J]. 航空学报, 2018, 39(5):421665. ZHOU X, WEN D, SHEN M Q, et al. Anisotropic yield and damage in warm forming of AZ31 magnesium alloy sheet:Implementation of constitutive model and numerical analysis[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):421665(in Chinese).
[11] 王安恒, 薛红前, 杨艳丽, 等. 基于中性层偏移的Z型材滚弯成形回弹预测[J]. 航空学报, 2019, 40(12):423127. WANG A H, XUE H Q, YANG Y L, et al. Springback prediction for Z-shaped profiles in roll bending process based on neutral layer shift[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):423127(in Chinese).
[12] 赵琳瑜, 韩冬, 张立武, 等. 旋压成形技术和设备的典型应用与发展[J]. 锻压技术, 2007, 32(6):18-26. ZHAO L Y, HAN D, ZHANG L W, et al. Typical application and development of metal spinning technology and equipment[J]. Forging & Stamping Technology, 2007, 32(6):18-26(in Chinese).
[13] ZHAN M, XING L, GAO P F, et al. An analytical springback model for bending of welded tube considering the weld characteristics[J]. International Journal of Mechanical Sciences, 2019, 150:594-609.
[14] LI H, YANG J C, CHEN G Y, et al. Towards intelligent design optimization:Progress and challenge of design optimization theories and technologies for plastic forming[J]. Chinese Journal of Aeronautics, 2021, 34(2):104-123.
[15] 詹梅, 王隽文, 樊晓光, 等. 薄壁构件淬火变形调控研究进展[J]. 锻压技术, 2018, 43(7):62-70. ZHAN M, WANG J W, FAN X G, et al. Research progress on quenching distortion control for thin-walled components[J]. Forging & Stamping Technology, 2018, 43(7):62-70(in Chinese).
[16] ZHANG J H, ZHAN M, YANG H, et al. 3D-FE modeling for power spinning of large ellipsoidal heads with variable thicknesses[J]. Computational Materials Science, 2012, 53(1):303-313.
[17] MA J, WELO T. Analytical springback assessment in flexible stretch bending of complex shapes[J]. International Journal of Machine Tools and Manufacture, 2021, 160:103653.
[18] 林波, 谷建民, 周尚荣, 等. 超半球壳体多道次拉深旋压工艺研究[J]. 机械工程学报, 2011, 47(6):86-91. LIN B, GU J M, ZHOU S R, et al. Research on process of multi-pass draw-spinning of hyper-hemispherical shell[J]. Journal of Mechanical Engineering, 2011, 47(6):86-91(in Chinese).
[19] 夏琴香, 杨明辉, 胡昱, 等. 杯形薄壁矩形内齿旋压成形数值模拟与试验[J]. 机械工程学报, 2006, 42(12):192-196. XIA Q X, YANG M H, HU Y, et al. Numerical simulation and experimentation cup-shaped thin-walled inner rectangular gear formed by spinning[J]. Chinese Journal of Mechanical Engineering, 2006, 42(12):192-196(in Chinese).
[20] 程禹霖, 运新兵, 杨俊英, 等. 轧制变形量对连续挤压纯铜板带组织性能的影响[J]. 塑性工程学报, 2014, 21(5):77-81. CHENG Y L, YUN X B, YANG J Y, et al. Effect of rolling deformation on microstructure and mechanical properties of continuous extrusion copper strip[J]. Journal of Plasticity Engineering, 2014, 21(5):77-81(in Chinese).
[21] 丁云鹏, 崔建忠, 乐启炽, 等. 镁合金板材的生产历史与研究现状[J]. 精密成形工程, 2014, 6(6):7-21. DING Y P, CUI J Z, LE Q Z, et al. Production history and present study status of magnesium alloy sheet[J]. Journal of Netshape Forming Engineering, 2014, 6(6):7-21(in Chinese).
[22] 裘辿, 刘振宇, 周思杭, 等. 基于多尺度高度场修正的零件表面形貌建模及应用[J]. 计算机辅助设计与图形学学报, 2012, 24(12):1631-1639. QIU C, LIU Z Y, ZHOU S H, et al. Modeling of part surface topography based on revised multi-scale altitude field[J]. Journal of Computer-Aided Design & Computer Graphics, 2012, 24(12):1631-1639(in Chinese).
[23] LI B, CAO Y L, YE X F, et al. Multi-scale prediction of the geometrical deviations of the surface finished by five-axis ball-end milling[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2017, 231(10):1685-1702.
[24] FORMOSA F, SAMPER S. Modal expression of form defects[M]//Models for Computer Aided Tolerancing in Design and Manufacturing. Dordrecht:Springer Netherlands,2007:13-22.
[25] GOIC G L, FAVRELIèRE H, SAMPER S, et al. Multi scale modal decomposition of primary form, waviness and roughness of surfaces[J]. Scanning, 2011, 33(5):332-341.
[26] SAMPER S, ADRAGNA P A, FAVRELIERE H, et al. Modeling of 2D and 3D assemblies taking into account form errors of plane surfaces[J]. Journal of Computing and Information Science in Engineering, 2009, 9(4):041005.
[27] SAMPER S, FORMOSA F. Form defects tolerancing by natural modes analysis[J]. Journal of Computing and Information Science in Engineering, 2007, 7(1):44-51.
[28] 游洁, 李韶乾, 张新鹏, 等. 国产汽车钢板材料性能波动特性的统计学分析[J]. 塑性工程学报, 2009, 16(1):176-179. YOU J, LI S Q, ZHANG X P, et al. A statistics analysis for variable behavior of homemade auto steels' properties[J]. Journal of Plasticity Engineering, 2009, 16(1):176-179(in Chinese).
[29] 王中宇, 孟浩, 付继华. 表面综合形貌误差的灰色分离方法[J]. 仪器仪表学报, 2008, 29(9):1810-1815. WANG Z Y, MENG H, FU J H. Separation method for surface comprehensive topography based on grey theory[J]. Chinese Journal of Scientific Instrument, 2008, 29(9):1810-1815(in Chinese).
[30] 陈国安, 葛世荣, 张晓云. 磨合过程中表面形貌变化的分形表征[J]. 润滑与密封, 1999, 24(2):55-56. CHEN G A,GE S R,ZAHNG X R. Fractal characterization of surface topography changes during running-in process[J]. Lubrication Engineering, 1999, 24(2):55-56(in Chinese).
[31] 陈国安, 葛世荣. 粗糙表面测量轮廓的分形插值模拟[J]. 摩擦学学报, 1998, 18(4):346-350. CHEN G A,GE S R. Fractal interpolation simulation of rough surface profiles[J]. Tribology, 1998, 18(4):346-350(in Chinese).
[32] CUI X L, ZHAN M, GAO P F, et al. Influence of blank thickness fluctuation on flange state and final thickness distribution in the power spinning of thin-walled head[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(1-4):363-372.
[33] CUI X L, ZHAN M, GAO P F, et al. Influence of blank flatness on the forming characteristics in the spinning of aluminum alloy thin-walled special head[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(7-8):3259-3266.
[34] SEBASTIANI G, BROSIUS A, EWERS R, et al. Numerical investigation on dynamic effects during sheet metal spinning by explicit finite-element-analysis[J]. Journal of Materials Processing Technology, 2006, 177(1-3):401-403.
[35] ABDELKHALEK S, MONTMITONNET P, LEGRAND N, et al. Coupled approach for flatness prediction in cold rolling of thin strip[J]. International Journal of Mechanical Sciences, 2011, 53(9):661-675.
[36] LI Z X, ZHAN M, FAN X G, et al. Multi-mode distortion behavior of aluminum alloy thin sheets in immersion quenching[J]. Journal of Materials Processing Technology, 2020, 279:116576.
[37] 刘培硕, 亢战. 考虑材料性能空间分布不确定性的可靠度拓扑优化[J]. 固体力学学报, 2018, 39(1):69-79. LIU P S, KANG Z. Reliability-based topology optimization considering spatially varying uncertain material properties[J]. Chinese Journal of Solid Mechanics, 2018, 39(1):69-79(in Chinese).
[38] 董辉跃, 柯映林, 孙杰, 等. 铝合金厚板淬火残余应力的有限元模拟及其对加工变形的影响[J]. 航空学报, 2004, 25(4):429-432. DONG H Y, KE Y L, SUN J, et al. Finite element method simulation for residual stress in quenched aluminum alloy thick-plate and its effect on machining distortion[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(4):429-432(in Chinese).
[39] XING L, ZHAN M, GAO P F, et al. A method for establishing a continuous constitutive model of welded metals[J]. Materials Science and Engineering:A, 2018, 718:228-240.
[40] LI R, ZHAN M, ZHENG Z B, et al. A constitutive model coupling damage and material anisotropy for wide stress triaxiality[J]. Chinese Journal of Aeronautics, 2020, 33(12):3509-3525.
[41] 黎凯, 杨旭静, 郑娟. 基于参数和代理模型不确定性的冲压稳健性设计优化[J]. 中国机械工程, 2015, 26(23):3234-3239. LI K, YANG X J, ZHENG J. Robust design optimization for stamping based on parametric and metamodel uncertainty[J]. China Mechanical Engineering, 2015, 26(23):3234-3239(in Chinese).
[42] WIEBENGA J H, ATZEMA E H, VAN DEN BOOGAARD A H. Stretching the limits of forming processes by robust optimization:a numerical and experimental demonstrator[J]. Journal of Materials Processing Technology, 2015, 217:345-355.
[43] WIEBENGA J H, ATZEMA E H, AN Y G, et al. Effect of material scatter on the plastic behavior and stretchability in sheet metal forming[J]. Journal of Materials Processing Technology, 2014, 214(2):238-252.
[44] ABDI H, WILLIAMS L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews:Computational Statistics, 2010, 2(4):433-459.
[45] 邱东. 多指标综合评价方法的系统分析[M]. 北京:中国统计出版社, 1991:16-20. QIU D. Systematic analysis of multi-index comprehensive evaluation method[M]. Beijing:China Statistics Press, 1991:16-20(in Chinese).
[46] LI C C, DER KIUREGHIAN A. Optimal discretization of random fields[J]. Journal of Engineering Mechanics, 1993, 119(6):1136-1154.
[47] GHANEM R G, SPANOS P D. Stochastic finite elements:A spectral approach[M]. New York:Springer New York, 1991.
[48] SHI F, LONG H, ZHAN M, et al. Uncertainty analysis on process responses of conventional spinning using finite element method[J]. Structural and Multidisciplinary Optimization, 2014, 49(5):839-850.
[49] ZHANG S Y, WU Y X, GONG H. A modeling of residual stress in stretched aluminum alloy plate[J]. Journal of Materials Processing Technology, 2012, 212(11):2463-2473.
[50] 秦国华, 林锋, 左敦稳. 基于材料非均匀性铝厚板预拉伸残余应力的预测方法[J]. 中国有色金属学报, 2015, 25(3):626-633. QIN G H, LIN F, ZUO D W. Prediction approach of residual stress distribution in aluminum alloy pre-stretched thick plate based on material non-uniformity[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(3):626-633(in Chinese).
[51] SONG Y L, HUA L, MENG F Z. Inhomogeneous constructive modelling of laser welded bead based on nanoindentation test[J]. Ironmaking & Steelmaking, 2012, 39(2):95-103.
[52] ZHAN M, DU H F, LIU J, et al. A method for establishing the plastic constitutive relationship of the weld bead and heat-affected zone of welded tubes based on the rule of mixtures and a microhardness test[J]. Materials Science and Engineering:A, 2010, 527(12):2864-2874.
[53] ABVABI A, ROLFE B, HODGSON P D, et al. The influence of residual stress on a roll forming process[J]. International Journal of Mechanical Sciences, 2015, 101-102:124-136.
[54] ABVABI A. Effect of residual stresses in roll forming process of metal sheets[D].Victoria:Deakin University, 2014:95-97.
[55] WEISS M, ROLFE B, HODGSON P D, et al. Effect of residual stress on the bending of aluminium[J]. Journal of Materials Processing Technology, 2012, 212(4):877-883.
[56] LI Z X, ZHAN M, FAN X G, et al. Age hardening behaviors of spun 2219 aluminum alloy component[J]. Journal of Materials Research and Technology, 2020, 9(3):4706-4716.
[57] ADAMUS J, LACKI P. Analysis of forming titanium welded blanks[J]. Computational Materials Science, 2014, 94:66-72.
[58] 龚志辉, 展召彬, 钟剑, 等. 差厚拼焊板冲压仿真模型的构建研究[J]. 热加工工艺, 2017, 46(1):168-171. GONG Z H, ZHAN Z B, ZHONG J, et al. Research on stamping simulation model construction of tailor-welded blank with different thickness[J]. Hot Working Technology, 2017, 46(1):168-171(in Chinese).
[59] 雷新鹏. 2219铝合金拼焊板旋压成形异型曲面规律与工艺设计研究[D]. 西安:西北工业大学, 2018:68-69. LEI X P. Research on deformation rules and processing design for the spinning of profiled surface component with welded-blank[D]. Xi'an:Northwestern Polytechnical University, 2018:68-69(in Chinese).
[60] 田少许. 大型复杂薄壁构件深拉伸成形变压边力设计优化技术及其应用研究[D]. 杭州:浙江大学, 2016:98-104. TIAN S X. Design and optimization of variable blank holder force in large complex thin-walled workpieces deep drawing process and its applications[D]. Hangzhou:Zhejiang University, 2016:98-104.(in Chinese)
[61] DU X P, CHEN W. Collaborative reliability analysis under the framework of multidisciplinary systems design[J]. Optimization and Engineering, 2005, 6(1):63-84.
[62] 夏侯唐凡, 刘宇, 张皓冬, 等. 考虑认知不确定性的多状态系统birnbaum重要度分析方法[J]. 机械工程学报, 2018, 54(8):223-232. XIAHOU T F, LIU Y, ZHANG H D, et al. Birnbaum importance measure of multi-state systems under epistemic uncertainty[J]. Journal of Mechanical Engineering, 2018, 54(8):223-232(in Chinese).
[63] JIN R, DU X, CHEN W. The use of metamodeling techniques for optimization under uncertainty[J]. Structural and Multidisciplinary Optimization, 2003, 25(2):99-116.
[64] 袁亚辉, 黄洪钟, 张小玲. 一种新的多学科系统不确定性分析方法:协同不确定性分析法[J]. 机械工程学报, 2009, 45(7):174-182. YUAN Y H, HUANG H Z, ZHANG X L. New method for uncertainty analysis in multidisciplinary system-collaborative uncertainty analysis[J]. Journal of Mechanical Engineering, 2009, 45(7):174-182(in Chinese).
[65] DU X P, CHEN W. Efficient uncertainty analysis methods for multidisciplinary robust design[J]. AIAA Journal, 2002, 40(3):545-552.
[66] DU X P. Efficient methods for engineering design under uncertainty[D]. Chicago:University of Illinois at Chicago, 2002:55-59.
[67] 陈立周. 工程稳健设计的发展现状与趋势[J]. 中国机械工程, 1998, 9(6):59-63. CHEN L Z. Recent advances and developing trend for engineering robust design[J]. China Mechanical Engineering, 1998, 9(6):59-63(in Chinese).
[68] KLEIBER M, ROJEK J, STOCKI R. Reliability assessment for sheet metal forming operations[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(39-40):4511-4532.
[69] ZHANG W F, SHIVPURI R. Probabilistic design of aluminum sheet drawing for reduced risk of wrinkling and fracture[J]. Reliability Engineering & System Safety, 2009, 94(2):152-161.
[70] 张骥超, 刘罡, 林忠钦, 等. 侧围外板冲压工艺稳健性优化设计[J]. 上海交通大学学报, 2012, 46(7):1005-1010. ZHANG J C, LIU G, LIN Z Q, et al. Robust optimization for an autobody outer panel stamping process[J]. Journal of Shanghai Jiao Tong University, 2012, 46(7):1005-1010(in Chinese).
[71] 孙光永, 李光耀, 陈涛, 等. 基于6σ的稳健优化设计在薄板冲压成形中的应用[J]. 机械工程学报, 2008, 44(11):248-254. SUN G Y, LI G Y, CHEN T, et al. Sheet metal forming based six sigma robust optimization design[J]. Chinese Journal of Mechanical Engineering, 2008, 44(11):248-254(in Chinese).
[72] LAFON P, ADRAGNA P A, NGUYEN V D. Multi-objective optimization under uncertainty for sheet metal forming[C]//MATEC Web of Conferences, 2016, 80:10004.
[73] 王彬文, 艾森, 张国凡, 等. 考虑不确定性的复合材料加筋壁板后屈曲分析模型验证方法[J]. 航空学报, 2020, 41(8):223987. WANG B W, AI S, ZHANG G F, et al. Validation method for post-buckling analysis model of stiffened composite panels considering uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):223987(in Chinese).
[74] 谢延敏, 于沪平, 陈军, 等. 基于kriging模型的可靠度计算[J]. 上海交通大学学报, 2007, 41(2):177-180, 193. XIE Y M, YU H P, CHEN J, et al. The reliability estimation based on kriging model[J]. Journal of Shanghai Jiao Tong University, 2007, 41(2):177-180, 193(in Chinese).
[75] 李方义, 李光耀, 李洪周, 等. 区间不确定多目标优化算法在薄板冲压成形中的应用研究[J]. 中国机械工程, 2010, 21(13):1609-1613. LI F Y, LI G Y, LI H Z, et al. Uncertain multi-objective optimization of sheet metal forming using interval method[J]. China Mechanical Engineering, 2010, 21(13):1609-1613(in Chinese).
[76] 胡静, 谢延敏, 王智, 等. 基于Dual-Kriging模型多目标稳健设计在板料拉深成形中的应用[J]. 塑性工程学报, 2013,20(3):43-48. HU J, XIE Y M, WANG Z, et al. The application of multi-objective robust design based on Dual-Kriging in the sheet drawing process[J]. Journal of Plasticity Engineering, 2013,20(3):43-48(in Chinese).
[77] 谢延敏. 基于动态kriging模型的板料成形工艺稳健设计[J]. 西南交通大学学报, 2014, 49(1):160-164. XIE Y M. Robust design of sheet forming process based on dynamic kriging model[J]. Journal of Southwest Jiaotong University, 2014, 49(1):160-164(in Chinese).
[78] RUBINSTEIN R Y, KROESE D P. Simulation and the Monte Carlo method[M]. Hoboken:John Wiley & Sons, Inc., 2007.
[79] GUNST R F. Response surface methodology:Process and product optimization using designed experiments[J]. Technometrics, 1996, 38(3):284-286.
[80] RAHMAN S, WEI D. A univariate approximation at most probable point for higher-order reliability analysis[J]. International Journal of Solids and Structures, 2006, 43(9):2820-2839.
[81] 刘德顺, 岳文辉, 杜小平. 不确定性分析与稳健设计的研究进展[J]. 中国机械工程, 2006, 17(17):1834-1841. LIU D S, YUE W H, DU X P. Study on uncertainty analysis and robust design:A review[J]. China Mechanical Engineering, 2006, 17(17):1834-1841(in Chinese).
[82] SAHAI A, SCHRAMM U, BURANATHITI T, et al. Sequential optimization and reliability assessment method for metal forming processes[J]. AIP Conference Proceedings, 2004, 712(1):2009-2013.
[83] 汤禹成, 陈军. 基于支持向量机和重要度抽样的高强度钢板冲压成形工艺稳健设计[J]. 材料科学与工艺, 2010, 18(5):735-740. TANG Y C, CHEN J. Robust design of high strength steel sheet metal forming process based on support vector machine and adaptive importance sampling[J]. Materials Science and Technology, 2010, 18(5):735-740(in Chinese).
[84] JIANG C, HAN X, LIU G R, et al. The optimization of the variable binder force in U-shaped forming with uncertain friction coefficient[J]. Journal of Materials Processing Technology, 2007, 182(1-3):262-267.
文章导航

/