流体力学与飞行力学

黏性液体横向射流破碎机理

  • 邓甜 ,
  • 李佳周 ,
  • 陈伟
展开
  • 1. 中国民航大学 中欧航空工程师学院, 天津 300300;
    2. 中国空气动力研究与发展中心 结冰与防除冰重点实验室, 绵阳 621000

收稿日期: 2020-12-21

  修回日期: 2021-01-15

  网络出版日期: 2021-05-20

基金资助

天津市教委科研计划(2020KJ036);结冰与防除冰重点实验室开放课题(IADL20200305)

Breakup mechanism of viscous liquid transverse jet

  • DENG Tian ,
  • LI Jiazhou ,
  • CHEN Wei
Expand
  • 1. Sino-European Institute of Aviation Engineering (SIAE), Civil Aviation University of China, Tianjin 300300, China;
    2. Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2020-12-21

  Revised date: 2021-01-15

  Online published: 2021-05-20

Supported by

Tianjin Municipal Education Commission Scientific Research Project (2020KJ036); Open Fund of Key Laboratory of Icing and Anti/De-icing (IADL20200305)

摘要

航空发动机中液体燃料雾化过程十分复杂,特别是雾化初始阶段,至今无法建立准确的雾化模型。本文利用线性不稳定性分析法研究均匀气场和二维剪切气场中,不同黏性液体横向射流破碎过程。在圆柱坐标系下,建立有黏液体横向射流色散方程,利用Muller法求解得到射流表面表面波的不稳定增长率随波数的变化情况。当来流为均匀气流时,考虑液体黏性影响,射流表面扰动波增长率的减小量与增长率的比值较不考虑黏性时的至少增大1 000倍。黏性对Kelvin-Helmholtz (K-H)和Rayleigh-Taylor (R-T)不稳定性均起到削弱作用,抑制了射流破碎,且表面波波数越多,黏性对破碎的抑制作用越强,但并不影响射流的不稳定波数范围。当黏性系数增大500倍时,表面波最大增长率降低80.37%,最佳波数减小40%,黏性力对表面波的抑制作用十分明显。横向来流为二维剪切气流时,横向气动力和剪切速度促进液体射流表面波生成进而产生破碎,而液体的表面张力和黏性力则会抑制表面波生成。液气动能比越大,气流剪切作用对射流不稳定性的影响越大,K-H不稳定性主导射流表面波的生成。进一步研究液体黏性对射流不稳定性的抑制作用,发现黏性对K-H不稳定性增长率的抑制作用较R-T不稳定性大,前者不稳定性增长率的削减可达82.7%,而后者削减量为49.1%。

本文引用格式

邓甜 , 李佳周 , 陈伟 . 黏性液体横向射流破碎机理[J]. 航空学报, 2022 , 43(3) : 125130 -125130 . DOI: 10.7527/S1000-6893.2021.25130

Abstract

The two-phase flow atomization process of liquid fuels in the aero-engine is highly complicated, particularly in the initial atomization process, and the accurate primary atomization mode has not been proposed yet.This study adopts the linear instability analysis method to explore the break of different viscous liquids in uniform cross airflow and 2D shear crossflow.In the cylindrical coordinate, the viscous dispersion equation is established and the surface wave growth rate variation with the change in the wave number is calculated using the Muller method.When the incoming flow is uniform and the viscosity of the liquid jet is considered, the ratio of the reduction to the growth rate of the surface wave increases by 1 000 times compared with that under the inviscid condition.The viscosity weakens the instability of both Kelvin-Helmholtz (K-H) and Rayleigh-Taylor (R-T) and inhibits the jet break.The larger the surface wave is, the stronger the inhibition effect of viscosity on the break; however, viscosity has no effect on the unsteady wave number range of the jet.When the viscosity coefficient increases by 500 times, the maximum surface wave growth rate and the optimum wave number decrease by 80.37% and 40%, respectively, and the effect of the viscous force on the surface wave is clear.When the transverse flow is 2D shear flow, the transverse aerodynamic force and shear velocity promote the surface wave of the liquid jet growth and leads to breakup, while the surface tension and viscosity inhibit the generation of surface waves.The larger the ratio of the liquid to air kinetic energy, the stronger the influence of velocity shear effect on instability, and the K-H instability dominates the generation of the jet surface wave.Further investigation into the inhibition effect of liquid viscosity on jet instability shows that the inhibition of viscosity on the growth rate of K-H instability is larger than that on R-T instability.The reduction of instability growth rate of the former can reach 82.7%, while that of the latter is 49.1%.

参考文献

[1] RAYLEIGH L.On the instability of jets[J].Proceedings of the London Mathematical Society, 1878, s1-10(1):4-13.
[2] WEBER C.Zum zerfall eines flüssigkeitsstrahles[J].ZAMM-Journal of Applied Mathematics and Mechanics, 1931, 11(2):136-154.
[3] HORN K P, REICHENBACH R E.Further experiments on spreading of liquids injected into a supersonic flow[J].AIAA Journal, 1969, 7(2):358-359.
[4] REICHENBACH R E, HORN K P.Investigation of injectant properties on jet penetration in a supersonic stream[J].AIAA Journal, 1971, 9(3):469-472.
[5] STERLING A M, SLEICHER C A.The instability of capillary jets[J].Journal of Fluid Mechanics, 1975, 68(3):477-495.
[6] REITZ R D, BRACCO F V.Mechanism of atomization of a liquid jet[J].Physics of Fluids, 1982, 25(10):1730-1742.
[7] YANG H Q.Asymmetric instability of a liquid jet[J].Physics of Fluids A:Fluid Dynamics, 1992, 4(4):681-689.
[8] YOSHINAGA T, KAN K.Breakup of a falling liquid sheet caused by amplified modulational waves[J].Fluid Dynamics Research, 2006, 38(5):313-338.
[9] CLARK C J, DOMBROWSKI N.Aerodynamic instability and disintegration of inviscid liquid sheets[J].Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1972, 329(1579):467-478.
[10] ERNEUX T, DAVIS S H.Nonlinear rupture of free films[J].Physics of Fluids A:Fluid Dynamics, 1993, 5(5):1117-1122.
[11] 史绍熙, 郗大光, 秦建荣, 等.液体射流结构特征的理论分析[J].燃烧科学与技术, 1996, 2(4):307-314. SHI S X, XI D G, QIN J R, et al.A theoretical analysis of the structural characteristics of a liquid jet[J]. Journal of Combustion Science and Technology, 1996, 2(4):307-314(in Chinese).
[12] 史绍熙, 杜青, 秦建荣, 等.液体燃料射流破碎机理研究中的时间模式与空间模式[J].内燃机学报, 1999, 17(3):205-210. SHI S X, DU Q, QIN J R, et al.Temporal mode and spatial mode in the study of liquid jet breakup[J].Transactions of CSICE, 1999, 17(3):205-210(in Chinese).
[13] 严春吉, 解茂昭, 殷佩海.粘性气体中粘性液体射流分裂与雾化机理研究[J].空气动力学学报, 2004, 22(4):422-426. YAN C J, XIE M Z, YIN P H.Mechanisms of breakup and atomization of a viscous liquid jet in a viscous gas[J].Acta Aerodynamica Sinica, 2004, 22(4):422-426(in Chinese).
[14] 万云霞, 黄勇, 朱英.液体圆柱射流破碎过程的实验[J].航空动力学报, 2008, 23(2):208-214. WAN Y X, HUANG Y, ZHU Y.Experiment on the breakup process of free round liquid jet[J].Journal of Aerospace Power, 2008, 23(2):208-214(in Chinese).
[15] AALBURG C, VAN LEER B, FAETH G M, et al.Properties of nonturbulent round liquid jets in uniform gaseous cross flows[J].Atomization and Sprays, 2005, 15(3):271-294.
[16] INAMURA T.Trajectory of a liquid jet traversing subsonic airstreams[J].Journal of Propulsion and Power, 2000, 16(1):155-157.
[17] MASHAYEK A, JAFARI A, ASHGRIZ N.Improved model for the penetration of liquid jets in subsonic crossflows[J].AIAA Journal, 2008, 46(11):2674-2686.
[18] MASHAYEK A, ASHGRIZ N.Model for deformation of drops and liquid jets in gaseous crossflows[J].AIAA Journal, 2009, 47(2):303-313.
[19] MASHAYEK A, BEHZAD M, ASHGRIZ N.Multiple injector model for primary breakup of a liquid jet in crossflow[J].AIAA Journal, 2011, 49(11):2407-2420.
[20] WANG S L, HUANG Y, LIU Z L.Theoretical analysis of surface waves on a round liquid jet in a gaseous crossflow[J].Atomization and Sprays, 2014, 24(1):23-40.
[21] LIU L H, YANG L J, FU Q F.Droplet size spatial distribution model of liquid jets injected into subsonic crossflow[J].International Journal of Aerospace Engineering, 2020, 2020:9317295.
[22] 邓甜, 李佳周, 陈伟.剪切气流中无黏液体横向射流破碎机理[J].航空学报, 2021, 42(7):124464. DENG T, LI J Z, CHEN W.Breakup mechanism of inviscid liquid transverse jet in shear airflow[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(7):124464(in Chinese).
[23] KARAGOZIAN A R.Transverse jets and their control[J].Progress in Energy and Combustion Science, 2010, 36(5):531-553.
[24] SEDARSKY D, PACIARONI M, BERROCAL E, et al.Model validation image data for breakup of a liquid jet in crossflow:part I[J].Experiments in Fluids, 2010, 49(2):391-408.
[25] SHEN J, LI X.Instability of an annular viscous liquid jet[J].Acta Mechanica, 1996, 114(1-4):167-183.
[26] LIAN Z W, LIN S P.Breakup of a liquid jet in a swirling gas[J].Physics of Fluids A:Fluid Dynamics, 1990, 2(12):2134-2139.
[27] 张德丰.MATLAB实用数值分析[M].北京:清华大学出版社, 2012:210-400. ZHANG D F.MATLAB practical numerical analysis[M].Beijing:Tsinghua University Press, 2012:210-400(in Chinese).
[28] WU P K, KIRKENDALL K A, FULLER R P, et al.Breakup processes of liquid jets in subsonic crossflows[J].Journal of Propulsion and Power, 1997, 13(1):64-73.
文章导航

/