舱内热环境的有效预测是优化飞行器热控与防热设计、减小系统冗余并保障飞行器热安全的重要基础。在国家数值风洞(NNW)工程支持下,针对目前舱内热环境多尺度、多机制复合传热特点及其数值预测面临的精度与效率提升难题,发展了多区域协同推进的时空耦合模型及流/固界面的自适应分辨率识别算法,建立了基于热格子Boltzmann方法(TLBM)与有限体积法(FVM)相互耦合的舱内复合传热跨尺度预测方法,开展了典型飞行器仪器舱的综合热分析,验证了耦合方法的计算精度及效率。研究表明,相关方法可实现舱内热环境的局部精细化与整体大规模的协同模拟,用于开展整体自然对流与设备局部热量传递的多尺度数值模拟,掌握不同环境参数对舱内热质传递过程的影响规律,从而为飞行器热防护/热管理一体化设计提供重要技术支撑。
Prediction of the thermal environment in the cabin is essential for aircraft thermal control and heat protection design and optimization, and is also important to system redundancy reduction and thermal safety. Due to the influence of multi-scale effects, it is difficult to improve the computational efficiency and accuracy of existing prediction methods. With the support of the National Numerical Windtunnel (NNW) Project, the space-time coupling model for multi-zone cooperative advancement and the adaptive resolution recognition algorithm for the fluid/solid interface are improved. Then, a hybrid heat transfer prediction approach is established based on the Thermal Lattice Boltzmann Method (TLBM) and the Finite Volume Method (FVM). To verify the accuracy and efficiency of the TLBM-FVM combined method, a comprehensive thermal analysis of a typical aircraft instrument cabin is carried out. The research shows that the proposed method can realize the local refinement and overall large-scale collaborative simulation of the thermal environment in the aircraft cabin, and can be used to grasp the influence of different parameters on heat and mass transfer process, thus providing important technical support for integrated design of thermal protection and management.
[1] 桂业伟, 唐伟, 杜雁霞. 临近空间高超声速飞行器热安全[M]. 北京:国防工业出版社, 2019. GUI Y W, TANG W, DU Y X. Thermal safety issues of near-space hypersonic vehicles[M]. Beijing:National Defense Industry Press, 2019(in Chinese).
[2] DONOVAN A B. Vehicle level transient aircraft thermal management modeling and simulation[D]. Dayton:Wright State University, 2015.
[3] 桂业伟. 高超声速飞行器综合热效应问题[J]. 中国科学:物理学力学天文学, 2019, 49(11):114702. GUI Y W. Combined thermal phenomena of hypersonic vehicle[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(11):114702(in Chinese).
[4] FERNANDEZ VILLACE V, STEELANT J. The thermal paradox of hypersonic cruisers[C]//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2015:3643.
[5] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J/OL]. 中国科学:技术科学, (2021-04-28)[2021-04-29]. https://kns.cnki.net/kcms/detail/11.5844.TH.202104-28.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese National Numerical Wind Tunnel Project[J/OL]. Scientia Sinica Technologica, (2021-04-28)[2021-04-29]. https://kns.cnki.net/kcms/detail/11.5844.TH.202104-28.0914.006.html (in Chinese).
[6] BOSBACH J, HEIDER A, DEHNE T, er al. Evaluation of cabin displacement ventilation under flight conditions[C]//28th International Congress of the Aeronautical Sciences. Bonn:The International Council of the Aeronautical Sciences, 2012:1-10.
[7] 王浚, 王佩广. 高超声速飞行器一体化防热与热控设计方法[J]. 北京航空航天大学学报, 2006, 32(10):1129-1134. WANG J, WANG P G. Integrated thermal protection and control system design methodology for hypersonic vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(10):1129-1134(in Chinese).
[8] 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7):020844. GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):020844(in Chinese).
[9] 陈耀松, 单肖文, 陈沪东. 计算流体力学的新方向及其在工业上的应用[J]. 中国科学(E辑:技术科学), 2007, 37(9):1107-1116. CHEN Y S, SHAN X W, CHEN H D. New direction of computational fluid dynamics and its applications in industry[J]. Science in China (Series E:Technological Sciences), 2007, 37(9):1107-1116(in Chinese).
[10] WANG X, SHANGGUAN Y Q, ZHANG H, et al. Numerical study on the near-wall characteristics of compound angled film cooling based on hybrid thermal lattice Boltzmann method[J]. Applied Thermal Engineering, 2018, 129:1670-1681.
[11] 郭照立, 郑楚光. 格子Boltzmann方法的原理与应用[M]. 北京:科学出版社, 2009:46-56. GUO Z L, ZHENG C G. Theory and applications of lattice Boltzmann method[M]. Beijing:Science Press, 2009:46-56(in Chinese).
[12] LI Z, YANG M, ZHANG Y W. Lattice Boltzmann method simulation of 3-D natural convection with double MRT model[J]. International Journal of Heat and Mass Transfer, 2016, 94:222-238.
[13] TONG Z X, HE Y L. A unified coupling scheme between lattice Boltzmann method and finite volume method for unsteady fluid flow and heat transfer[J]. International Journal of Heat and Mass Transfer, 2015, 80:812-824.
[14] 桂业伟, 刘磊, 耿湘人, 等. 气动力/热与结构多场耦合计算策略与方法研究[J]. 工程热物理学报, 2015, 36(5):1047-1051. GUI Y W, LIU L, GENG X R, et al. Study on the computation strategy and method of aero-dynamic-thermal-structural coupling problem[J]. Journal of Engineering Thermophysics, 2015, 36(5):1047-1051(in Chinese).
[15] 杨肖峰, 唐伟, 桂业伟, 等. 探路者号火星探测器气动热和传热耦合分析[J]. 工程热物理学报, 2014, 35(12):2461-2465. YANG X F, TANG W, GUI Y W, et al. Coupled computation of aeroheating and heat transfer for Mars pathfinder entry vehicle[J]. Journal of Engineering Thermophysics, 2014, 35(12):2461-2465(in Chinese).
[16] LUIKOV A V. Conjugate convective heat transfer problems[J]. International Journal of Heat and Mass Transfer, 1974, 17(2):257-265.
[17] VERSTRAETE T, SCHOLL S. Stability analysis of partitioned methods for predicting conjugate heat transfer[J]. International Journal of Heat and Mass Transfer, 2016, 101:852-869.