由多层等厚铝合金板真空扩散焊接制成的航空构件在超声无损检测过程中常常因为不同层的缺陷在水平于声波传播方向上发生重叠,导致上、下层缺陷回波发生混叠,影响下层缺陷的判别。因此混叠信号的分离对重叠缺陷的检出具有重要意义。在传统的平滑化L0算法的基础上,改用双曲反正切函数和修正牛顿迭代法来逼近L0范数的最小值,同时将投影条件中的等式约束放宽为不等式约束,再利用凸优化方法进行求解,最终实现了含噪超声重叠信号的分解与重构。实验表明,对于含噪信号,相比于其他稀疏表示方法,改进后的SL0算法在稀疏能力和重建效果上都有着更好的表现。同时,稀疏分解得到的信号参数和实际测得的真实数据也具有很好的一致性,证明了该算法的准确性。
In the process of ultrasonic non-destructive testing, the defects of different layers inside the aerospace components made of multilayer aluminum alloy plates of equal thickness by vacuum diffusion welding often overlap horizontally in the direction of sound wave propagation. This results in aliasing of echoes of the upper and lower defects, affecting identification of the defects of the lower layer. Therefore, separation of aliasing signals has great significance to detection of overlapping defects. In this paper, based on the traditional SL0 algorithm, the hyperbolic arctangent function and the modified Newton iteration method are used to approximate the minimum value of the L0 norm. Meanwhile, the optimal solution is obtained by convex quadratic programming with inequality constraints. Finally, the decomposition and reconstruction of noisy ultrasound overlapping signals are realized. The results reveal that compared with other sparse representation methods, the improved SL0 algorithm has better performance in both sparse ability and reconstruction effect for noisy signals. Besides, the parameters of the signal obtained by sparse decomposition are consistent with the real data obtained by actual measurement, which proves the accuracy of the algorithm.
[1] HEINZ A, HASZLER A, KEIDEL C, et al. Recent development in aluminium alloys for aerospace applications[J]. Materials Science and Engineering:A, 2000, 280(1):102-107.
[2] SABHARWALL P, CLARK D E, MIZIA R E, et al. Diffusion-welded microchannel heat exchanger for industrial processes[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(1):011009.
[3] MORTEAN M V V, CISTERNA L H R, PAIVA K V, et al. Development of diffusion welded compact heat exchanger technology[J]. Applied Thermal Engineering, 2016, 93:995-1005.
[4] 李涤尘,鲁中良,田小永,等.增材制造-面向航空航天制造的变革性技术[J].航空学报, 2022, 43(4):525387. LI D C, LU Z L, TIAN X Y, et al. Additive manufacturing-revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4):525387.
[5] HONARVAR F, VARVANI-FARAHANI A. A review of ultrasonic testing applications in additive manufacturing:defect evaluation, material characterization, and process control[J]. Ultrasonics, 2020, 108:106227.
[6] KUMAR S S, RAVISANKAR B. Evaluation of quality diffusion bonding in similar material (Cu/Cu) using ultrasonic'C'scan testing method[J]. Applied Mechanics and Materials, 2014, 592-594:289-293.
[7] EYBPOOSH M, BERGES M, NOH H Y. An energy-based sparse representation of ultrasonic guided-waves for online damage detection of pipelines under varying environmental and operational conditions[J]. Mechanical Systems and Signal Processing, 2017, 82:260-278.
[8] ZHANG G M, ZHANG C Z, HARVEY D M. Sparse signal representation and its applications in ultrasonic NDE[J]. Ultrasonics, 2012, 52(3):351-363.
[9] SCHNASS K, VANDERGHEYNST P. Dictionary preconditioning for greedy algorithms[J]. IEEE Transactions on Signal Processing, 2008, 56(5):1994-2002.
[10] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322.
[11] 郑国军,唐志峰,王友钊,等.基于匹配追踪算法的超声导波管道轴向缺陷大小定量分析[J].机械工程学报, 2013, 49(4):1-5. ZHENG G J, TANG Z F, WANG Y Z, et al. Evaluation of pipe axial defeat through the use of ultrasonic guided wave and matching pursuit[J]. Journal of Mechanical Engineering, 2013, 49(4):1-5(in Chinese).
[12] 燕学智,温艳鑫,刘国红,等.基于稀疏表示和近似l0范数约束的宽带信号DOA估计[J].航空学报, 2017, 38(6):320705. YAN X Z, WEN Y X, LIU G H, et al. Broadband signal DOA estimation based on sparse representation and l0-norm approximation[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):320705(in Chinese).
[13] MOR E, AZOULAY A, ALADJEM M. A matching pursuit method for approximating overlapping ultrasonic echoes[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(9):1996-2004.
[14] CHEN S S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1):129-159.
[15] MALLAT S G, ZHANG Z F. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415.
[16] DONOHO D L. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(6):797-829.
[17] FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):586-597.
[18] MOHIMANI H, BABAIE-ZADEH M, JUTTEN C. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1):289-301.
[19] MOHIMANI G H, BABAIE-ZADEH M, JUTTEN C. Fast sparse representation based on smoothed l0 norm[C]//Independent Component Analysis and Signal Separation, 2007:389-396
[20] BU H X, TAO R, BAI X, et al. Regularized smoothed l0 norm algorithm and its application to CS-based radar imaging[J]. Signal Processing, 2016, 122:115-122.
[21] 赵瑞珍,林婉娟,李浩,等.基于光滑l0范数和修正牛顿法的压缩感知重建算法[J].计算机辅助设计与图形学学报, 2012, 24(4):478-484. ZHAO R Z, LIN W J, LI H, et al. Reconstruction algorithm for compressive sensing based on smoothed l0 norm and revised Newton method[J]. Journal of Computer-Aided Design&Computer Graphics, 2012, 24(4):478-484(in Chinese).