综述

重复使用运载器制导与控制技术综述

  • 宋征宇 ,
  • 蔡巧言 ,
  • 韩鹏鑫 ,
  • 王聪 ,
  • 潘豪 ,
  • 张广春 ,
  • 李栩进
展开
  • 1. 中国运载火箭技术研究院, 北京 100076;
    2. 中国运载火箭技术研究院 空天业务部, 北京 100076;
    3. 北京航天自动控制研究所, 北京 100854

收稿日期: 2020-12-03

  修回日期: 2020-12-17

  网络出版日期: 2021-05-10

基金资助

国家自然科学基金(619330101010801)

Review of guidance and control technologies for reusable launch vehicles

  • SONG Zhengyu ,
  • CAI Qiaoyan ,
  • HAN Pengxin ,
  • WANG Cong ,
  • PAN Hao ,
  • ZHANG Guangchun ,
  • LI Xujin
Expand
  • 1. China Academy of Launch Vehicle Technology, Beijing 100076, China;
    2. Aerospace Business Department, China Academy of Launch Vehicle Technology, Beijing 100076, China;
    3. Beijing Aerospace Automatic Control Institute, Beijing 100854, China

Received date: 2020-12-03

  Revised date: 2020-12-17

  Online published: 2021-05-10

Supported by

National Natural Science Foundation of China (619330101010801)

摘要

本文对重复使用运载器制导与控制技术进行综述。随着航天技术的发展,对航天运载器重复使用的需求也日益剧增,具备可复用的天地往返运输能力也一直是航天工业追求的重要目标之一,而制导与控制将发挥重要的作用。首先回顾了全球范围内重复使用运载器的研究进展,随后从不同的维度对其发展途径进行分类和分析,并从垂直起飞垂直着陆(VTVL)、垂直起飞水平着陆(VTHL)、水平起飞水平着陆(HTHL)等3个方面对制导与控制的需求进行了梳理。针对不同的起降模式,详细构建了完整的制导与控制模型、约束与目标函数,从而对比在不同场景下制导与控制的特点和挑战。在此基础上,对在VTVL、VTHL、HTHL 3种工作方式下制导与控制理论研究与工程实践中所取得的研究成果进行分析,并对各种方法的特点进行了论述和比对。最后对本领域当前亟待突破的技术难点和发展趋势进行了讨论,并对推动重复使用运载器应用的重点研究方向进行了归纳和展望。

本文引用格式

宋征宇 , 蔡巧言 , 韩鹏鑫 , 王聪 , 潘豪 , 张广春 , 李栩进 . 重复使用运载器制导与控制技术综述[J]. 航空学报, 2021 , 42(11) : 525050 -525050 . DOI: 10.7527/S1000-6893.2021.25050

Abstract

This paper reviews the guidance and control technologies of the Reusable Launch Vehicle (RLV). With the development of the aerospace technology, the demand for RLVs is also increasing rapidly. It has been one of the important goals of the aerospace industry to acquire the capability of reusable transportation to and from space. Guidance and control technologies play an important role in the development of RLVs. This paper first reviews the research progress of RLVs worldwide, analyzing their development approaches from different views of point, and sorting out the requirements of guidance and control from three aspects:Vertical Takeoff and Vertical Landing (VTVL), Vertical Takeoff and Horizontal Landing (VTHL), and Horizontal Takeoff and Horizontal Landing (HTHL). The complete guidance and control models, constraints and objective functions for RLVs of different liftoff and landing modes are elaborated. The features and challenges of the guidance and control technologies in different scenarios are compared. Theoretical and practical achievements in guidance and control for VTVL, VTHL, and HTHL missions are reviewed, and the characteristics of these methods are analyzed and compared. The technical challenges and development trends in guidance and control of RLVs are also explored, and the key research directions to promote the application of RLVs are discussed.

参考文献

[1] MCCURDY D, ROCHE J. Structural sizing of a horizontal take-off launch vehicle with an air collection and enrichment system[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston:AIAA, 2004.
[2] EKLUND D.Quicksat:A two stage to orbit reusable launch vehicle utilizing air breathing propulsion for responsive space access[C]//Space 2004 Conference and Exhibit. Reston:AIAA, 2004.
[3] WALLACE J, BRADFORD J, CHARANIA A C, et al. Concept study of the ARES hybrid-OS launch system[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2006.
[4] Committee on Reusable Launch Vehicle Technology and Test Program, National Research Council. Reusable launch vehicle:Technology development and test program[M]. Washington, D.C.:The National Academies Press, 1995.
[5] WAY D, OLDS J, WAY D, et al. Sirius-A new launch vehicle option for Mega-LEO constellation deployment[C]//33rd Joint Propulsion Conference and Exhibit. Reston:AIAA, 1997.
[6] ANDREWS D, CROCKER A. Go horizontal:a reusable, evolvable, feasible space launch roadmap[C]//Space 2004 Conference and Exhibit. Reston:AIAA, 2004.
[7] DOUPE C, SPONABLE J, ZWEBER J,et al. Fully reusable access to space technology (FAST) methane rocket[R]. Edwards:Air Force Research Lab Edwards AFB CA Propulsion Directorate, 2007.
[8] MUSK E. Making life multiplanetary transcript 2017[C]//68th International Astronautical Congress, 2017.
[9] Federal Aviation Administration. The annual compendium of commercial space transportation[R]. Washington, D.C.:FAA Office of Commercial Space Transportation, 2018.
[10] SPIES J. RLV Hopper:Consolidated system concept[J]. Acta Astronautica, 2003, 53(4-10):709-717.
[11] KAUFFMANN J. Future European launch systems in FLPP and overview of second period[C]//57th International Astronautical Congress. Reston:AIAA, 2006
[12] TOMATIS C, BOUAZIZ L, FRANCK T, et al. RLV candidates for European future launchers preparatoryprogramme[J]. Acta Astronautica, 2009, 65(1-2):40-46.
[13] SIPPEL M, MANFLETTI C, BURKHARDT H. Long-term/strategic scenario for reusable booster stages[J]. Acta Astronautica, 2006, 58(4):209-221.
[14] KLEVANSKI J, SIPPEL M. Special aspects of flight dynamics of a reusable cryogenic booster stage[C]//Fifth European Symposium on Aerothermodynamics for Space Vehicles, 2004.
[15] PRAMPOLINI M, LOUAAS E, PREL Y, et al. Advanced space transportation systems, BARGOUZIN booster[J]. Acta Astronautica, 2008, 63(1-4):435-447.
[16] 黄盘兴, 何英姿, 杨鸣, 等. 类IXV飞行器初期再入制导与姿态控制方法研究[J]. 空间控制技术与应用, 2018, 44(3):22-27, 42. HUANG P X, HE Y Z, YANG M, et al. Reentry guidance and control method for class-IXV aircraft[J]. Aerospace Control and Application, 2018, 44(3):22-27, 42(in Chinese).
[17] MOOIJ E, CHU Q. Tightly-coupled IMU/GPS Re-entry navigation system[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2002.
[18] 杨勇, 王小军, 唐一华, 等. 重复使用运载器发展趋势及特点[J]. 导弹与航天运载技术, 2002(5):15-19. YANG Y, WANG X J, TANG Y H, et al. Development trends and characteristics of reusable launch vehicles[J]. Missiles and Space Vehicles, 2002(5):15-19(in Chinese).
[19] ISHIMOTO S, FUJII K, SHIMURA K. A design study of a next generation launch system[C]//26th International Symposium on Space Technology and Science, 2008
[20] 杨勇. 我国重复使用运载器发展思路探讨[J]. 导弹与航天运载技术, 2006(4):1-4. YANG Y. Study on roadmap of Chinese reusable launch vehicle[J]. Missiles and Space Vehicles, 2006(4):1-4(in Chinese).
[21] ZH.印度成功进行RLV-TD飞行试验[J]. 航天工业管理, 2016(6):46. ZH. Successful RLV-TD flight test in India[J]. Aerospace Industry Management, 2016(6):46(in Chinese).
[22] BRINDA V, ARORA R K, JANARDHANAE. Mission analysis of a reusable launch vehicle technology demonstrator (RLV-TD)[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston:AIAA, 2005.
[23] JEE G, SHARMA K K, KOTESWARA R K, et al. Evolution of attitude control law of an Indian re-entry launch vehicle[J]. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2014, 6(3-4):148-157.
[24] HAIGNERÉ J P, GATHIER L, COUÉ P.Vehra SH suborbital manned vehicle[C]//57th International Astronautical Congress, 2006.
[25] Space Exploration Thechnologies Crop. SpaceX, Falcon user's guide (August 2020)[M]. Hawthorne:SpaceX, 2020.
[26] DUMONT E, ECKER T, CHAVAGNAC C, et al, CALLISTO reusable VTVL launcher first stage demonstrator[C]//Space Propulsion, 2019.
[27] GUEDRON S, ISHIMOTO S, DUMONT E. CALLISTO:A cooperation for an in-flight demonstration of reusability[C]//70th International Astronautical Congress, 2019.
[28] JEROME V, JEREMIE H, Technology acceleration process for the THEMIS low cost and reusable prototype[C]//8th European Conference for Aeronautics and Space Sciences, 2019.
[29] PATUREAU DE MIRAND A, BAHU J M, GOGDET O. Ariane Next, a vision for the next generation of Ariane Launchers[J]. Acta Astronautica, 2020, 170:735-749.
[30] SONG Z Y, WANG C, THEIL S, et al. Survey of autonomous guidance methods for powered planetary landing[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5):652-674.
[31] HAGOPIAN J. 2nd generation reusable launch vehicle-concepts for flight operations[C]//SpaceOps 2002 Conference. Reston:AIAA, 2002.
[32] 蔡巧言, 张旭辉, 彭小波, 等. 可重复使用助推器系统综述与评估[M]. 北京:国防工业出版社, 2018. CAI Q Y, ZHANG X H, PENG X B, et al. Reusable booster system review and assessment[M]. Beijing:National Defense Industry Press, 2018.
[33] 鲁宇, 蔡巧言, 王飞. 临近空间与重复使用技术研究[J]. 导弹与航天运载技术, 2018(3):1-9. LU Y, CAI Q Y, WANG F. Near space and reusable technology[J]. Missiles and Space Vehicles, 2018(3):1-9(in Chinese).
[34] 闻悦, 马婷婷, 郑平军, 等. 重复使用航天运输系统设计与评估[J]. 科学通报, 2020, 65(9):764-770. WEN Y, MA TT, ZHENG P J, et al. Design and assessment of reusable space transportation system[J]. Chinese Science Bulletin, 2020, 65(9):764-770(in Chinese).
[35] 龙乐豪, 蔡巧言, 王飞, 等. 重复使用航天运输系统发展与展望[J]. 科技导报, 2018, 36(10):84-92. LONG L H, CAI Q Y, WANG F, et al. Development of reusable space transportation technologies[J]. Science & Technology Review, 2018, 36(10):84-92(in Chinese).
[36] 姚德清, 魏毅寅, 杨志红, 等. 空天飞行器制导控制技术研究进展与展望[J]. 宇航学报, 2020, 41(7):850-859. YAO D Q, WEI Y Y, YANG Z H, et al. Progress and prospect of research on guidance and control technology of aerospace vehicle[J]. Journal of Astronautics, 2020, 41(7):850-859(in Chinese).
[37] 徐延万. 控制系统-(上)[M]. 北京:中国宇航出版社, 1989. XU Y W. Control system-(Volume I)[M]. Beijing:China Aerospace Press, 1989.
[38] CHERN H S. A open loop guidance architecture for navigationally robust on-orbit docking[M]. Washington, D.C.:NASA, 1995.
[39] DEATON A W,KELLEY P B. Structural load reduction of the space shuttle booster/orbiter configuration using a load relief guidance technique:NASA-TM-X-64738[R]. Washington, D.C.:NASA, 1973.
[40] HANSON J, SHRADER M, CRUZEN C. Ascent guidance comparisons[C]//Guidance, Navigation, and Control Conference. Reston:AIAA, 1994.
[41] AHMAD N, ANZALONE E J, SCOTT C A, et al. Evolution and impact of Saturn V on space launch system from a guidance, navigation, and mission analysis perspective[C]//70th International Astronautical Congress, 2019.
[42] SMITH I E. General formulation of the iterative guidance mode:NASA TMX-53414[R]. Washington, D.C.:NASA, 1966.
[43] HORN H J, The iterative guidance law for saturn[C]//12th East Coast Conference on Aerospace and Navigational Electronics,1965.
[44] 吕新广, 宋征宇. 长征运载火箭制导方法[J]. 宇航学报, 2017, 38(9):895-902. LV X G, SONG Z Y. Guidance methods oflong-March launch vehicles[J]. Journal of Astronautics, 2017, 38(9):895-902(in Chinese).
[45] 宋征宇, 潘豪, 王聪, 等. 长征运载火箭飞行控制技术的发展[J]. 宇航学报, 2020, 41(7):868-879. SONG Z Y, PAN H, WANG C, et al. Development of flight control technology oflong March launch vehicles[J]. Journal of Astronautics, 2020, 41(7):868-879(in Chinese).
[46] 施国兴, 吕新广, 巩庆海. 满足多终端约束的二次曲线迭代制导方法研究[J]. 中国空间科学技术, 2018, 38(2):24-31. SHI G X, LYU X G, GONG Q H. Research on quadratic curve IGM for multi-terminal constraints[J]. Chinese Space Science and Technology, 2018, 38(2):24-31(in Chinese).
[47] GREEN W G, TUCKER W B. Comparison of the Atlas/Centaur (Surveyor) and IGM guidance concepts:NASA TM X-53674[R]. Washington,D.C.:NASA, 1964.
[48] SCHLEICH W. The space shuttle ascent guidance and control[C]//Guidance and Control Conference. Reston:AIAA, 1982.
[49] MCHENRY R L, LONG A D, COCKRELL B F, et al. Space Shuttle ascent guidance, navigation, and control[J]. Journal of the Astronautical Sciences, 1979, 27(1):1-38.
[50] VON DER PORTEN P, AHMAD N, HAWKINS M, et al. Powered explicit guidance modifications & enhancements for space launch system block-1 and block-1b vehicles[C]//41st Annual AAS Rocky Mountain Section Guidance and Control Conference,2018.
[51] BROWN K R, HARROLD E F, JOHNSON G W. Rapid optimization of multiple-burn rocket flights[M]//Proceedings of the XXth International Astronautical Congress, 1972:649-671.
[52] VON DER PORTEN P, AHMAD N, HAWKINS M. Closed loop guidance trade study for space launch system block-1b vehicle[C]//AAS/AIAA Astrodynamics Specialist Conference, 2018.
[53] KAMPOS B. Guidance, flight mechanics and trajectory optimization. Volume 9-General Perturbations Theory:NASA CR-1008[R]. Washington,D.C.:NASA, 1968.
[54] SPEYER J L, JARMARK B S A. Robust perturbation guidance for the advanced launch system[C]//1989 American Control Conference.Piscataway:IEEE Press, 1989:2489-2494.
[55] 崔鑫水. CZ-2E运载火箭制导技术[J]. 导弹与航天运载技术, 1993(2):6, 21-27. CUI X S. Guidance technique of CZ-2E launch vehicle[J]. Missiles and Space Vehicles, 1993(2):6, 21-27(in Chinese).
[56] 黄文博, 张银辉, 师帅, 等. 运载火箭摄动制导导引系数实时计算方法[J]. 国防科技大学学报, 2013, 35(1):19-23. HUANG W B, ZHANG Y H, SHI S, et al. Research on the real-time calculation of perturbation guidance coefficients for the launch vehicle[J]. Journal of National University of Defense Technology, 2013, 35(1):19-23(in Chinese).
[57] 唐明亮, 邱伟, 王颖, 等. 基于摄动制导的运载火箭一子级落点控制[J]. 导弹与航天运载技术, 2017(4):68-71. TANG M L, QIU W, WANG Y, et al. Impact point control of first sub-stage of launch vehicle based on perturbation guidance[J]. Missiles and Space Vehicles, 2017(4):68-71(in Chinese).
[58] 田再克, 杨锁昌, 冯德龙, 等. 基于摄动理论的落点预测算法研究[J]. 现代防御技术, 2014, 42(3):86-90. TIAN Z K, YANG S C, FENG D L, et al. Impact point prediction algorithm based on perturbation theory[J]. Modern Defence Technology, 2014, 42(3):86-90(in Chinese).
[59] SUN H S. Closed-loop endo-atmospheric ascent guidance for reusable launch vehicle[D]. Ames Iowa:Iowa State University, 2005.
[60] XU H, CHEN W C. An energy management ascent guidance algorithm for solid rocket-powered launch vehicles[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2011.
[61] BOURGEOIS E, BOKANOWSKI O, ZIDANI H, et al. New improvements in the optimization of the launcher ascent trajectory through the HJB approach[C]//7th European Conference for Aeronautics and Space Sciences, 2017.
[62] BLESS R R. Time-domain finite elements in optimal control with application to launch-vehicle guidance[D]. Atlanta:Georgia Institute of Technology, 1991.
[63] VACHON A, DESBIENS A, GAGNON E, et al. Launch ascent guidance by discrete multi-model predictive control[J]. Acta Astronautica, 2014, 95:101-110.
[64] CALISE A J, LEUNG M S K. Optimal guidance law development for an advanced launch system:NASA CR-4667[R]. Washington,D.C.:NASA, 1995.
[65] 张志国, 余梦伦, 耿光有, 等. 应用伪谱法的运载火箭在线制导方法研究[J]. 宇航学报, 2017, 38(3):262-269. ZHANG Z G, YU M L, GENG G Y, et al. Research on application of pseudo-spectral method in online guidance method for a launch vehicle[J]. Journal of Astronautics, 2017, 38(3):262-269(in Chinese).
[66] SONG Z Y, ZHAO D, LV X, Terminal attitude-constrained guidance and control for lunar soft landing[J]. Advances in the Astronautical Sciences, 2015, 153:137-147.
[67] ROTHMUND C. Fluorine rocket engine demonstrators[C]//57th International Astronautical Congress. Reston:AIAA, 2006.
[68] 陈书钊, 楚龙飞, 杨秀梅, 等. 状态预测神经网络控制应用于小型可回收火箭[J]. 航空学报, 2019, 40(3):322286. CHEN S Z, CHU L F, YANG X M, et al. Application of state prediction neural network control algorithm in small reusable rocket[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):322286(in Chinese).
[69] KLUMPP A R. Apollo lunar descent guidance[J].Automatica, 1974, 10(2):133-146.
[70] PRAKASH R, BURKHART P D, CHEN A, et al. Mars science laboratory entry, descent, and landing system overview[C]//2008 IEEE Aerospace Conference. Piscataway:IEEE, 2008:1-18.
[71] 张洪华, 关轶峰, 黄翔宇, 等. 嫦娥三号着陆器动力下降的制导导航与控制[J]. 中国科学:技术科学, 2014, 44(4):377-384. ZHANG H H, GUAN Y F, HUANG X Y, et al. Guidance navigation and control for Chang'E-3 powered descent[J]. Scientia Sinica (Technologica), 2014, 44(4):377-384(in Chinese).
[72] EBRAHIMI B, BAHRAMI M, ROSHANIAN J. Optimal sliding-mode guidance with terminal velocity constraint for fixed-interval propulsive maneuvers[J]. Acta Astronautica, 2008, 62(10-11):556-562.
[73] GUO Y N, HAWKINS M, WIE B. Waypoint-optimized zero-effort-miss/zero-effort-velocity feedback guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(3):799-809.
[74] ZHOU L Y, XIA Y Q. Improved ZEM/ZEV feedback guidance for Mars powered descent phase[J]. Advances in Space Research, 2014, 54(11):2446-2455.
[75] ZHANG Y, GUO Y N, MA G F, et al. Collision avoidance ZEM/ZEV optimal feedback guidance for powered descent phase of landing on Mars[J]. Advances in Space Research, 2017, 59(6):1514-1525.
[76] PASCUCCI C A, BENNANI S, BEMPORAD A. Model predictive control for powered descent guidance and control[C]//2015 European Control Conference (ECC). Piscataway:IEEE Press, 2015:1388-1393.
[77] TOPCU U, CASOLIVA J, MEASE K D. Minimum-fuel powered descent for Mars pinpoint landing[J]. Journal of Spacecraft and Rockets, 2007, 44(2):324-331.
[78] ZHANG B J, LIU Z C, LIU G. High-precision adaptive predictive entry guidance for vertical rocket landing[J]. Journal of Spacecraft and Rockets, 2019, 56(6):1735-1741.
[79] ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5):1353-1366.
[80] ACIKMEŞE B, CARSON J M, BLACKMORE L. Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem[J]. IEEE Transactions on Control Systems Technology, 2013, 21(6):2104-2113.
[81] SAGLIANO M.Pseudospectral convex optimization for powered descent and landing[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(2):320-334.
[82] SZMUK M, REYNOLDS T, ACIKMESE B, et al. Successive convexification for 6-DoF powered descent guidance with compound state-triggered constraints[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019.
[83] BLACKMORE L. Autonomous precision landing of space rockets[C]//Frontiers of Engineering:Reports on Leading-Edge Engineering from the 2016 Symposium, 2016, 46:15-20.
[84] WANG C, SONG Z Y. Convex model predictive control for rocket vertical landing[C]//37th Chinese Control Conference (CCC), 2018.
[85] WANG J B, CUI N G. Apseudospectral-convex optimization algorithm for rocket landing guidance[C]//2018 AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2018.
[86] MA L, WANG K X, XU Z H, et al. Trajectory optimization for lunar rover performing vertical takeoff vertical landing maneuvers in the presence of terrain[J]. Acta Astronautica, 2018, 146:289-299.
[87] SEELBINDER D. On-board trajectory computation for Mars atmospheric entry based on parametric sensitivity analysis of optimal control problems[D]. Bremen:Universität Bremen, 2017.
[88] MA L, WANG K X, XU Z H, et al. Multi-point powered descent guidance based on optimal sensitivity[J]. Aerospace Science and Technology, 2019, 86:465-477.
[89] WANG C, SONG Z Y. Rapid trajectory optimization for lunar soft landing with hazard avoidance[J]. Advances in the Astronautical Sciences, 2018, 161:885-900.
[90] SCHARF D P, REGEHR M W, VAUGHAN G M, et al. ADAPT demonstrations of onboard large-divert Guidance with a VTVL rocket[C]//2014 IEEE Aerospace Conference. Piscataway:IEEE Press, 2014:1-18.
[91] SAGLIANO M, DUMKE M, THEIL S. Simulations and flight tests of a new nonlinear controller for the EAGLE lander[J]. Journal of Spacecraft and Rockets, 2018, 56(1):259-272.
[92] DUMKE M, SAGLIANO M, SARANRITTICHAI P, et al. EAGLE-Environment for autonomous GNC landing experiments[C]//10th International ESA Conference on Guidance, Navigation and Control System, 2017.
[93] YANG Y, HU D F, YU M L. Roadmap of long-March reusable launch vehicle[C]//57th International Astronautical Congress. Reston:AIAA, 2006.
[94] SATO S, TSUKAMOTO T, YAMAMOTO T, et al., The study of navigation, guidance, and control system of reusable vehicle experiment (RV-X)[C]//28th Workshop on JAXA Astrodynamics and Flight Mechanics, 2018.
[95] 宋征宇, 王聪. 运载火箭返回着陆在线轨迹规划技术发展[J]. 宇航总体技术, 2019, 3(6):1-12. SONG Z Y, WANG C. Development of online trajectory planning technology for launch vehicle return and landing[J]. Astronautical Systems Engineering Technology, 2019, 3(6):1-12(in Chinese).
[96] SÁNCHEZ C, IZZO D. Real-time optimal control via deep neural networks:Study on landing problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5):1122-1135.
[97] FURFARO R, SCORSOGLIO A, LINARES R, et al. Adaptive generalized ZEM-ZEV feedback guidance for planetary landing via a deep reinforcement learning approach[J]. Acta Astronautica, 2020, 171:156-171.
[98] YOU S X, WAN C H, DAI R, et al. Learning-based optimal control for planetary entry, powered descent and landing guidance[C]//AIAA SciTech 2020 Forum. Reston:AIAA, 2020.
[99] 崔乃刚, 吴荣, 韦常柱, 等. 垂直起降可重复使用运载器发展现状与关键技术分析[J]. 宇航总体技术, 2018, 2(2):27-42. CUI N G, WU R, WEI C Z, et al. Development and key technologies of vertical takeoff vertical landing reusable launch vehicle[J]. Astronautical Systems Engineering Technology, 2018, 2(2):27-42(in Chinese).
[100] LU P. Propellant-optimal powered descent guidance[J]. Journal of Guidance, Control, and Dynamics,2017, 41(4):813-826.
[101] WEI C Z, JU X Z, WU R, et al. Geometry and time updaters-based arbitrary-yaw iterative explicit guidance for fixed-thrust boost back of vertical take-off/vertical landing reusable launch vehicles[J]. Aerospace Science and Technology, 2019, 95:105433.
[102] 王小虎, 陈翰馥, 刘锋. 机动再入飞行器主动段再入点约束闭路制导研究[J]. 宇航学报, 2002, 23(4):37-41, 51. WANG X H, CHEN H F, LIU F. Study of the closed-loop guidance law for boost phase with reentry constraints of maneuvering reentry vehicles[J]. Journal of Astronautics, 2002,23(4):37-41, 51(in Chinese).
[103] 李连仲. 远程弹道导弹闭路制导方法研究[J]. 系统工程与电子技术, 1980, 2(4):1-17. LI L Z. Research on closed-loop guidance method of long-range ballistic missile[J]. Systems Engineering and Electronics, 1980, 2(4):1-17(in Chinese).
[104] 张卫东, 刘玉玺, 刘汉兵, 等. 运载火箭姿态控制技术的发展趋势和展望[J]. 航天控制, 2017, 35(3):85-89. ZHANG W D, LIU Y X, LIU H B, et al. Development trend and prospect of attitude control technologies of launch vehicle[J]. Aerospace Control, 2017, 35(3):85-89(in Chinese).
[105] 张新. 重复使用运载器多模型自适应控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2019:10-13. ZHANG X. Research on multi-mode adaptive control method for reusable launch vehicle[D]. Harbin:Harbin Institute of Technology, 2019:10-13(in Chinese).
[106] TIAN B L, FAN W R, SU R, et al. Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1639-1650.
[107] HALL C, GALLAHER M, HENDRIX N. X-33 attitude control system design for ascent, transition, and entry flight regimes[C]//Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 1998.
[108] SIMPLICIO P, MARCOS A, BENNANI S. New control functionalities for launcher load relief in ascent and descent Flight[C]//European Conference for Aeronautics & Space Sciences, 2019.
[109] ORR J S, WALL J H, VANZWIETEN T S, et al. Space launch system ascent flight control design[J]. Advances in the Astronautical Sciences, 2014, 151:141-154.
[110] WALL J H, MILLER C J, HANSON C E, et al. In-flight suppression of a destabilized F/A-18 structural mode using the space launch system adaptive augmenting control system[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2015.
[111] DENNEHY C J, VANZWIETEN T S, HANSON C E, et al. Flight testing of the space launch system (SLS) adaptive augmenting control (AAC) algorithm on an F/A-18:NASA/TM-2014-218528[R]. Washington,D.C.:NASA, 2014.
[112] PEI J, ROTHHAAR P. Demonstration of the space launch system augmenting adaptive control algorithm on pole-cart platform[C]//2018 AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2018.
[113] MAO Q, DOU L Q, TIAN B L, et al. Reentry attitude control for a reusable launch vehicle withaeroservoelastic model using type-2 adaptive fuzzy sliding mode control[J]. International Journal of Robust and Nonlinear Control, 2018, 28(18):5858-5875.
[114] 王勇, 李延军, 张亮, 等. 基于最优控制的航天器断续姿控系统设计方法[J]. 导弹与航天运载技术, 2017(4):63-67. WANG Y, LI Y J, ZHANG L, et al. An optimal control method for discontinuous attitude control system of spacecraft[J]. Missiles and Space Vehicles, 2017(4):63-67(in Chinese).
[115] XING G Q, PARVEZ S A. Nonlinear attitude state tracking control for spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(3):624-626.
[116] SHTESSEL Y, HALL C. Sliding mode control of the X-33 with an engine failure[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston:AIAA, 2000.
[117] SHTESSEL Y, HALL C, BAEV S, et al. Flexible modes control using sliding mode observers:Application to Ares I[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2010.
[118] PEI J, PUETZ A, DUARTE C, et al. Suppression of nonlinear rotary slosh dynamics using the SLS adaptive augmenting control system demonstration on a quadcopter testbed[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019.
[119] HALL C E, SHTESSEL Y B. Sliding mode disturbance observer-based control for a reusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6):1315-1328.
[120] WANG F, HUA C C, ZONG Q. Novel smooth sliding mode attitude control design for constrained reentry vehicle based on disturbance observer[J]. International Journal of Systems Science, 2019, 50(1):75-90.
[121] WANG F, ZONG Q, TIAN B L. Adaptive backstepping finite time attitude control of reentry RLV with input constraint[J]. Mathematical Problems in Engineering, 2014, 2014:1-19.
[122] WANG F, HUA C C, ZONG Q. Attitude control of reusable launch vehicle in reentry phase with input constraint via robust adaptive backstepping control[J]. International Journal of Adaptive Control and Signal Processing, 2015, 29(10):1308-1327.
[123] MAO Q, DOU L Q, ZONG Q, et al. Attitude control design for reusable launch vehicles using adaptive fuzzy control with compensation controller[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(3):823-836.
[124] 刘超逸, 唐硕, 许志. 可重复使用运载器复合控制研究[J]. 计算机仿真, 2013, 30(10):76-80. LIU C Y, TANG S, XU Z. Research on hybrid control for reusable launch vehicle[J]. Computer Simulation, 2013, 30(10):76-80(in Chinese).
[125] 陆艳辉, 张曙光. 离散RCS的PWPF调制方式改进及混合控制逻辑设计[J]. 航空学报, 2012, 33(9):1561-1570. LU Y H, ZHANG S G. An improvement on PWPF modulation of discrete RCS and design of the blended control logic[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1561-1570(in Chinese).
[126] HUANG Y, XU K K, HAN J Q, et al. Flight control design using extended state observer and non-smooth feedback[C]//Proceedings of the 40th IEEE Conference on Decision and Control (Cat.No.01CH37228). Piscataway:IEEE Press, 2001:223-228.
[127] HARPOLD J C, GRAVES C A. Shuttle entry guidance[J]. Journal of the Astronautical Sciences, 1979, 27(3):239-268.
[128] HANSON J, COUGHLIN D, DUKEMAN G, et al. Ascent, transition, entry, and abort guidance algorithm design for the X-33 vehicle[C]//Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 1998.
[129] LU P, SUN H S, TSAI B. Closed-loopendoatmospheric ascent guidance[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(2):283-294.
[130] DUKEMAN G, CALISE A. Enhancements to an atmospheric ascent guidance algorithm[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2003.
[131] LU P, ZHANG L J, SUN H S. Ascent guidance for responsive launch:A fixed-point approach[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2005.
[132] 孙春贞, 黄一敏, 郭锁凤. 可重复使用跨大气层飞行器自动着陆纵向制导与控制系统设计[C]//中国航空学会飞行器控制与操纵第十一次学术交流会, 2005:62-68. SUN C Z, HUANG Y M, GUO S F. Research onautolanding technology and control system design for reusable launch vehicle[C]//The Flight Control and Manipulation's Eleventh Academic Conference of the Chinese Association of Aeronautics, 2005:62-68(in Chinese).
[133] MEASE K, KREMER J P. Shuttle entry guidance revisited[C]//Astrodynamics Conference. Reston:AIAA, 1992.
[134] HARPOLD J C, GAVERT D E. Space Shuttle entry guidance performance results[J]. Journal of Guidance, Control, and Dynamics, 1983, 6(6):442-447.
[135] LU P. Entry guidance and trajectory control for reusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(1):143-149.
[136] SHEN Z J, LU P. Onboard generation of three-dimensional constrained entry trajectories[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):111-121.
[137] SHEN Z J. On-board three-dimensional constrained entry flight trajectory generation[D]. Ames:Iowa State University, 2002.
[138] LU P. Nonlinear trajectory tracking guidance with application to a launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(1):99-106.
[139] MEASE K, TEUFEL P, SCHOENENBERGER H, et al. Re-entry trajectory planning for a reusable launch vehicle[C]//24th Atmospheric Flight Mechanics Conference. Reston:AIAA, 1999.
[140] MEASE K D, CHEN D T, TEUFEL P, et al. Reduced-order entry trajectory planning for acceleration guidance[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(2):257-266.
[141] SARAF A, LEAVITT J A, CHEN D T, et al. Design and evaluation of an acceleration guidance algorithm for entry[J]. Journal of Spacecraft and Rockets, 2004, 41(6):986-996.
[142] MEASE K D, KREMER J P. Shuttle entry guidance revisited using nonlinear geometric methods[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(6):1350-1356.
[143] CHOWDHRY R, ZIMMERMANN C, YOUSSEF H, et al. Predictor-corrector entry guidance for reusable launch vehicles[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2001.
[144] LU P. Predictor-corrector entry guidance for low-lifting vehicles[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4):1067-1075.
[145] LU P. Asymptotic analysis of quasi-equilibrium glide in lifting entry flight[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3):662-670.
[146] XUE S B, LU P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1273-1281.
[147] LAVAGNA M, PARIGINI C, ARMELLIN R.PSO algorithm for planetary atmosphere entry vehicles multidisciplinary guidance design[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston:AIAA, 2006.
[148] 陈上上, 何英姿, 刘贺龙. 基于粒子群优化的再入飞行器在线轨迹规划[J]. 上海航天, 2015, 32(6):1-7, 52. CHEN S S, HE Y Z, LIU H L. Onboard trajectory planning for entry vehicle based on particle swarm optimization[J]. Aerospace Shanghai, 2015, 32(6):1-7, 52(in Chinese).
[149] 荣思远, 周宏宇, 白瑜亮, 等. 可重复使用运载器滑翔段轨迹快速优化方法[J]. 战术导弹技术, 2020(2):66-73. RONG S Y, ZHOU H Y, BAI Y L, et al. Fast gliding trajectory optimization for reusable launch vehicle[J]. Tactical Missile Technology, 2020(2):66-73(in Chinese).
[150] MOORE T E. Spaceshuttle entry terminal area energy management[M]. Washington,D.C.:National Aeronautics and Space Administration, 1991.
[151] HILL A, ANDERSON D, COUGHLIN D, et al. X-33 trajectory optimization and design[C]//Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 1998.
[152] TSIKALAS G. Space Shuttle autoland design[C]//Guidance and Control Conference. Reston:AIAA, 1982.
[153] BOLLINO K, OPPENHEIMER M, DOMAN D. Optimal guidance command generation and tracking for reusable launch vehicle reentry[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2006.
[154] BARTON G H. New methodologies for assessing the rrobustness of the X-34 auto landing trajectories[C]//24th Annual AAS Guidance and Control Conference, 2001.
[155] GIRERD A, BARTON G. Next generation entry guidance-Onboard trajectory generation for unpowered drop tests[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2000.
[156] SCHIERMAN J, HULL J, WARD D. On-line trajectory command reshaping for reusable launch vehicles[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2003.
[157] VERMA A, OPPENHEIMER M, DOMAN D. On-line adaptive estimation and trajectory reshaping[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2005.
[158] BARTON G H, GRUBLER A C,DYCKMAN T R, et al. New methodologies for onboard generation of TAEM trajectories for autonomous RLVs[C]//2002 Core Technologies for Space Systems Conference, 2002.
[159] BARTON G, TRAGESSER S.Autolanding trajectory design for the X-34[C]//24th Atmospheric Flight Mechanics Conference. Reston:AIAA, 1999.
[160] SCHIERMAN J, GANDHI N, HULL J, et al. Flight test results of an adaptive guidance system for reusable launch vehicles[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2004.
[161] KAFER G. Space Shuttle Entry/Landing flight control design description[C]//Guidance and Control Conference. Reston:AIAA, 1982.
[162] KIRSTEN P. Development of a fuel-saving flight control system for the Space Shuttle based on flight experience[C]//Aircraft Design Systems and Operations Meeting. Reston:AIAA, 1985.
[163] JOHNSON E, CALISE A, EL-SHIRBINY H, et al. Feedback linearization with Neural Network augmentation applied to X-33 attitude control[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2000.
[164] Lee & Associates, LLC. Support to X-33/Resusable launch vehicle technology program:20010000337[R]. Washington, D.C.:NASA, 2000.
[165] LI Y X. Deep reinforcement learning:An overview[DB/OL]. arXiv:1701.07274,2017.
[166] SHTESSEL Y, TOURNES C, KRUPP D, et al. Reusable launch vehicle control in sliding modes[C]//Guidance, Navigation, and Control Conference. Reston:AIAA, 1997.
[167] SHTESSEL Y, MCDUFFIE J, JACKSON M, et al. Sliding mode control of the X-33 vehicle in launch and re-entry modes[C]//Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 1998.
[168] SHTESSEL Y, HALL C, JACKSON M. Reusable launch vehicle control in multiple-time-scale sliding modes[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(6):1013-1020.
[169] HALL C E, SHTESSEL Y B. Sliding mode disturbance observer-based control for a reusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6):1315-1328.
[170] JOHNSON E N. Limited authority adaptive flight control[D]. Atlanta:Georgia Institute of Technology, 2000.
[171] JOHNSON E, CALISE A, EL-SHIRBINY H, et al. Feedback linearization with Neural Network augmentation applied to X-33 attitude control[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2000.
[172] JOHNSON E N, CALISE A J. Limited authority adaptive flight control for reusable launch vehicles[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(6):906-913.
[173] ZHU J, BANKER B, HALL C. X-33 ascent flight control design by trajectory linearization-A singular perturbation approach[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2000.
[174] ZHU J, HUIZENGA A. A type two linearization controller for a resuable launch vehicle-A singular perturbation approach[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston:AIAA, 2004.
文章导航

/