电子电气工程与控制

复合材料飞机接地回流网络网内压降分析

  • 杨占刚 ,
  • 隋政 ,
  • 张起浩 ,
  • 刘建英
展开
  • 中国民航大学 电子信息与自动化学院, 天津 300300

收稿日期: 2020-10-12

  修回日期: 2021-05-11

  网络出版日期: 2021-05-10

基金资助

国家商用飞机制造工程技术研究中心创新基金(COMAC-SFGS-2021-609)

Voltage drop in composite aircraft grounding and current return network

  • YANG Zhangang ,
  • SUI Zheng ,
  • ZHANG Qihao ,
  • LIU Jianying
Expand
  • College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China

Received date: 2020-10-12

  Revised date: 2021-05-11

  Online published: 2021-05-10

Supported by

Innovation Fund of National Engineering Research Center for Commercial Aircraft Manufacturing(COMAC-SFGS-2021-609)

摘要

为保证机载电气设备的正常运行,复合材料飞机机身需增设金属接地回流网络来满足机上电气系统的接地需求。针对复合材料飞机接地回流网络网内压降计算问题,采用基于导体的体积部分元等效电路方法,对安装在复合材料飞机上的接地回流网络进行建模,通过计算接地回流网络接地点间的阻抗及接地回路的电流分布,分析某型飞机28 VDC、115 VAC汇流条上部分配电单元负载在巡航工况下接地网内沿路径的电压降,并考虑了故障电流注入及构件间接触阻抗对接地回流网络网内压降的影响。通过建立简化模型对网内压降进行分析,所提出的网内压降计算方法及仿真计算结果可为复合材料飞机接地回流网络的设计安装、故障管理及电气保护系统设计等方面提供参考。

本文引用格式

杨占刚 , 隋政 , 张起浩 , 刘建英 . 复合材料飞机接地回流网络网内压降分析[J]. 航空学报, 2022 , 43(1) : 324859 -324859 . DOI: 10.7527/S1000-6893.2021.24859

Abstract

To ensure normal operation of onboard electrical equipment, a metal grounding and current return network should be added to the composite aircraft fuselage to meet the grounding requirements of the onboard electrical system. For calculation of the pressure drop in the composite aircraft grounding and current return network, the conductor-based volumetric partial element equivalent circuit method is used to model the grounding and current return network installed on the composite aircraft. We analyze the voltage drop of partial distribution unit loads which belong to 28 VDC, 115 VAC bus along the path in the grounding grid under the cruising condition, and consider the influence of large fault current injection and contact impedance between components on the voltage drop of the grounding and current return network. The voltage drop in the network is analyzed by establishing a simplified model. The proposed calculation method and simulation calculation results of the voltage drop in the network can provide references for the design and installation of composite aircraft grounding and current return network, fault management and electrical protection system design.

参考文献

[1] JAYAKRISHNA K, KAR V R, SULTAN M T H, et al. Materials selection for aerospace components[M]//Sustainable Composites for Aerospace Applications. Amsterdam: Elsevier, 2018: 1-18.
[2] MEOLA C, BOCCARDI S, CARLOMAGNO G M. Composite material overview and its testing for aerospace components[M]//Sustainable Composites for Aerospace Applications. Amsterdam: Elsevier, 2018: 69-108.
[3] RANA S, PARVEEN S, FANGUEIRO R. Multiscale composites for aerospace engineering[M]//Advanced Composite Materials for Aerospace Engineering. Amsterdam: Elsevier, 2016: 265-293.
[4] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8): 2773-2797. GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2773-2797(in Chinese).
[5] ZHAOQ, ZHANG K, ZHU S, et al. Review on the electrical resistance/conductivity of carbon fiber reinforced polymer[J]. Applied Sciences, 2019, 9(11): 2390.
[6] 李涤尘,鲁中良,田小永,等.增材制造——面向航空航天制造的变革性技术[J/OL].航空学报,[2021-05-02].http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25387. LI D C, LU Z L, TIAN X Y, et al. Additive manufacturing-revolutionary technology for leading the aerospace manufacturing[J/OL]. Acta Aeronautica et Astronautica Sinica,[2021-05-02].http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25387.
[7] CALADO E A, LEITE M, SILVA A. Selecting composite materials considering cost and environmental impact in the early phases of aircraft structure design[J]. Journal of Cleaner Production, 2018, 186: 113-122.
[8] KARCH C, METZNER C. Lightning protection of carbon fibre reinforced plastics—An overview[C]//2016 33rd International Conference on Lightning Protection(ICLP). Piscataway: IEEE Press, 2016: 1-8.
[9] 刘锐, 张丽. 复合材料飞机电搭接/接地研究[J]. 航空科学技术, 2016, 27(8): 31-35. LIU R, ZHANG L. Research oncomposite aircraft electrical bonding/grounding[J]. Aeronautical Science & Technology, 2016, 27(8): 31-35(in Chinese).
[10] JONES C E, NORMAN P J, GALLOWAY S J, et al. Electrical model of carbon fibre reinforced polymers for the development of electrical protection systems for more-electric aircraft[C]//2016 18th European Conference on Power Electronics and Applications(EPE’16 ECCE Europe). Piscataway: IEEE Press, 2016: 1-10.
[11] GUTIERREZ G G, MATEOS ROMERO D, CABELLO M R, et al. On the design of aircraft electrical structure networks[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(2): 401-408.
[12] REVEL I, PICHE A, PERES G, et al. Modeling strategy for functional current return in large CFRP structures for aircraft applications[C]//2008 International Symposium on Electromagnetic Compatibility-EMC Europe. Piscataway: IEEE Press, 2008: 1-5.
[13] ZHANG X Y, XU G Z, ZHANG S, et al. Anumerical computation forward problem model of electrical impedance tomography based on generalized finite element method[J]. IEEE Transactions on Magnetics, 2014, 50(2): 1045-1048.
[14] DUX L, ZOU J, WANG Z X. Calculation of the impedance of a rail track with earth return for the high-speed railway signal circuit using finite-element method[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4.
[15] RUEHLI A E. Equivalent circuit models for three-dimensional multiconductor systems[J]. IEEE Transactions on Microwave Theory and Techniques, 1974, 22(3): 216-221.
[16] GARRETT J E. Advancements of the partial element equivalent circuit formulation[D].Lexington:The University of Kentucky,1997.
[17] 丛国瑞. 基于部分元等效电路的电磁建模方法研究[D]. 长沙: 国防科学技术大学, 2011: 17-30. CONG G R. Study of electromagnetic modeling approach based on partial element equivalent circuit[D]. Changsha: National University of Defense Technology, 2011: 17-30(in Chinese).
[18] 龙海波. 三维全媒质体系的部分元等效电路法及其建模[D]. 北京: 清华大学, 2005: 24-70. LONG H B. Partial element equivalent circuit method for three-dimensional fullmedium systems and its modeling[D]. Beijing: Tsinghua University, 2005: 24-70(in Chinese).
[19] 张筱. 基于等效原理的PEEC建模研究[D]. 北京: 清华大学, 2009: 24-113. ZHANG X. Partial element equivalent circuit method based on equivalent principle[D]. Beijing: Tsinghua University, 2009: 24-113(in Chinese).
[20] TORCHIO R. A volume PEEC formulation based on the cell method for electromagnetic problems from low to high frequency[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(12): 7452-7465.
[21] BANDINELLI M, MORI A, GALGANI G, et al. A surface PEEC formulation for high-fidelity analysis of the current return networks in composite aircrafts[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(5): 1027-1036.
[22] GOLEANU A L, DUNAND M, GUICHON J M, et al. Towards the conception and optimisation of the current return path in a composite aircraft[C]//2010 IEEE International Systems Conference. Piscataway: IEEE Press, 2010: 466-471.
[23] GODDET E, RETIÈRE N, STOJANOVIC' V, et al. Maximizing the algebraic connectivity of meshed electrical pathways used as current return network[J]. Mathematics and Computers in Simulation, 2019, 158: 18-31.
[24] 刘建英, 隋政, 张起浩, 等. 复合材料飞机接地回流网络建模与阻抗分析[J]. 北京航空航天大学学报, 2021, 47(5): 885-893. LIU J Y, SUI Z, ZHANG Q H,et al. Modeling and impedance analysis of composite material aircraft grounded return network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 885-893(in Chinese).
文章导航

/