论文

纱线规格对3D机织复合材料拉伸性能的影响

  • 刘增飞 ,
  • 刘凯 ,
  • 张斌斌 ,
  • 李雪枫 ,
  • 葛敬冉 ,
  • 黄建 ,
  • 李超 ,
  • 孙新杨 ,
  • 孙煜 ,
  • 梁军
展开
  • 1. 北京理工大学 先进结构技术研究院, 北京 100081;
    2. 北京理工大学 宇航学院, 北京 100081;
    3. 南京玻璃纤维设计研究院, 南京 211101;
    4. 哈尔滨工业大学 航天科学与力学系, 哈尔滨 150001;
    5. 中航复合材料有限责任公司, 北京 101300

收稿日期: 2021-03-08

  修回日期: 2021-04-29

  网络出版日期: 2021-04-29

基金资助

国家自然科学基金(11732002,11902030,11802018,U20B2002)

Effect of yarn size on tensile properties of 3D woven composites

  • LIU Zengfei ,
  • LIU Kai ,
  • ZHANG Binbin ,
  • LI Xuefeng ,
  • GE Jingran ,
  • HUANG Jian ,
  • LI Chao ,
  • SUN Xinyang ,
  • SUN Yu ,
  • LIANG Jun
Expand
  • 1. Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China;
    2. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    3. Nanjing Fiberglass Research & Design Institute, Nanjing 211101, China;
    4. Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001, China;
    5. AVIC Composite Corporation Ltd., Beijing 101300, China

Received date: 2021-03-08

  Revised date: 2021-04-29

  Online published: 2021-04-29

Supported by

National Natural Science Foundation of China (11732002, 11902030, 11802018, U20B2002)

摘要

为研究纬纱规格对3D层-层斜纹机织复合材料细观结构和力学行为的影响,开展了系统的实验研究。采用光学显微镜观察了不同纬纱规格复合材料的细观纱线结构变化。开展了不同纬纱规格复合材料的拉伸实验,采用数字图像相关法获得了拉伸试样的表面应变场,结合断口形状分析了复合材料的拉伸失效机制。研究表明,随纬纱规格增大,经纱卷曲率增大,经向纤维体积分数减少,经向拉伸力学性能减弱;纬纱卷曲率减小,纬向纤维体积分数增大,纬向拉伸力学性能增强。此外,3D机织复合材料拉伸应力-应变曲线表现出了明显的"台阶"效应,承载纱线的卷曲率越大,"台阶"效应越明显。

本文引用格式

刘增飞 , 刘凯 , 张斌斌 , 李雪枫 , 葛敬冉 , 黄建 , 李超 , 孙新杨 , 孙煜 , 梁军 . 纱线规格对3D机织复合材料拉伸性能的影响[J]. 航空学报, 2022 , 43(6) : 525453 -525453 . DOI: 10.7527/S1000-6893.2021.25453

Abstract

Systematic experiments were carried out to investigate the effect of weft yarn sizes on the mesoscopic structure and mechanical behavior of 3D layer-to-layer twill woven composites. Variations of the mesoscopic yarn structure of the composite with different weft yarn sizes were observed by optical microscopy. Tensile tests were carried out for the composite with different weft yarn sizes. The digital image correlation method was applied to obtain the surface strain field of the tensile specimens. The tensile failure mechanism of the composite was analyzed based on the fracture morphology. It is shown that with the increasing weft yarn size, the crimp ratio of warp yarns increases, the volume fraction of warp fibers decreases, and the warp tensile properties are weakened. However, with increasing weft yarn size, the crimp ratio of weft yarns decreases, the volume fraction of weft fibers increases, and the corresponding weft tensile properties are enhanced. Furthermore, the tensile stress-strain curve of 3D woven composite exhibits a significant "step" effect, which becomes more obvious with higher crimp rates of load-bearing yarns.

参考文献

[1] 陈利, 赵世博, 王心淼. 三维纺织增强材料及其在航空航天领域的应用[J]. 纺织导报, 2018(增刊1):80-87. CHEN L, ZHAO S B, WANG X M. Development and application of 3D textile reinforcements in the aerospace field[J]. China Textile Leader, 2018(Sup. 1):80-87(in Chinese).
[2] 关留祥, 李嘉禄, 焦亚男, 等. 航空发动机复合材料叶片用3D机织预制体研究进展[J]. 复合材料学报, 2018, 35(4):748-759. GUAN L X, LI J L, JIAO Y N, et al. Review of 3D woven preforms for the composite blades of aero engine[J]. Acta Materiae Compositae Sinica, 2018, 35(4):748-759(in Chinese).
[3] 陈利, 焦伟, 王心淼, 等. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8):62-72. CHEN L, JIAO W, WANG X M, et al. Research progress on mechanical properties of 3D woven composites[J]. Journal of Materials Engineering, 2020, 48(8):62-72(in Chinese).
[4] 果立成, 廖锋, 李志兴, 等. 机织复合材料损伤演化研究进展[J]. 中国科学:技术科学, 2020, 50(7):876-896. GUO L C, LIAO F, LI Z X, et al. Research progress in damage evolution of woven composites[J]. Scientia Sinica (Technologica), 2020, 50(7):876-896(in Chinese).
[5] 杨甜甜, 张典堂, 邱海鹏, 等. SiCf/SiC纺织复合材料细观结构及力学性能研究进展[J]. 航空材料学报, 2020, 40(5):1-12. YANG T T, ZHANG D T, QIU H P, et al. Research progress on meso-structure and mechanical properties of SiCf/SiC textile composites[J]. Journal of Aeronautical Materials, 2020, 40(5):1-12(in Chinese).
[6] KAZEMIANFAR B, ESMAEELI M, NAMI M R. Response of 3D woven composites under low velocity impact with different impactor geometries[J]. Aerospace Science and Technology, 2020, 102:105849.
[7] SALEH M N, SOUTIS C. Recent advancements in mechanical characterisation of 3D woven composites[J]. Mechanics of Advanced Materials and Modern Processes, 2017, 3:12.
[8] 官威, 李文晓, 戴瑛, 等. 纺织复合材料预制体变形研究综述[J]. 航空制造技术, 2021, 64(增刊1):22-37. GUAN W, LI W X, DAI Y, et al. A review of study on deformation of textile composite preforms[J]. Aeronautical Manufacturing Technology, 2021, 64(Sup. 1):22-37(in Chinese).
[9] LEGRAND X, BOUSSU F, NAUMAN S, et al. Forming behaviour of warp interlock composite[J]. International Journal of Material Forming, 2009, 2(1):177-180.
[10] ANSAR M, WANG X W, ZHOU C W. Modeling strategies of 3D woven composites:A review[J]. Composite Structures, 2011, 93(8):1947-1963.
[11] KIASAT M S, SANGTABI M R. Effects of fiber bundle size and weave density on stiffness degradation and final failure of fabric laminates[J]. Composites Science and Technology, 2015, 111:23-31.
[12] 王立朋, 燕瑛, 曾东, 等. 厚度对混合机织复合材料低速冲击和准静态横向压缩性能的影响[J]. 航空学报, 2007, 28(1):213-216. WANG L P, YAN Y, ZENG D, et al. Influence of thickness on low-speed impact and quasi-static indentation performances of mixed woven composites[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):213-216(in Chinese).
[13] WARREN K C, LOPEZ-ANIDO R A, GOERING J. Experimental investigation of three-dimensional woven composites[J]. Composites Part A:Applied Science and Manufacturing, 2015, 73:242-259.
[14] DAI S, CUNNINGHAM P R, MARSHALL S, et al. Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites[J]. Composites Part A:Applied Science and Manufacturing, 2015, 69:195-207.
[15] SALEH M N, YUDHANTO A, POTLURI P, et al. Characterising the loading direction sensitivity of 3D woven composites:Effect of z-binder architecture[J]. Composites Part A:Applied Science and Manufacturing, 2016, 90:577-588.
[16] PANKOW M, JUSTUSSON B, RIOSBAAS M, et al. Effect of fiber architecture on tensile fracture of 3D woven textile composites[J]. Composite Structures, 2019, 225:111139.
[17] 赵哲, 温卫东, 宋健, 等. 2.5维机织复合材料的纬向力学性能试验[J]. 航空动力学报, 2017, 32(11):2729-2736. ZHAO Z, WEN W D, SONG J, et al. Test of the weft mechanical properties of 2.5D woven composites[J]. Journal of Aerospace Power, 2017, 32(11):2729-2736(in Chinese).
[18] JIAO W, CHEN L, XIE J B, et al. Effect of weaving structures on the geometry variations and mechanical properties of 3D LTL woven composites[J]. Composite Structures, 2020, 252:112756.
[19] 郭瑞卿, 张一帆, 吕庆涛, 等. 多层多向层联三维机织复合材料的拉伸性能[J]. 复合材料学报, 2020, 37(10):2409-2417. GUO R Q, ZHANG Y F, LV Q T, et al. Tensile properties of multilayer multiaxial interlock 3D woven composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10):2409-2417(in Chinese).
[20] 刘刚. 三维机织复合材料拉伸和剪切损伤与失效分析[D]. 哈尔滨:哈尔滨工业大学, 2019. LIU G. Tensile and shear damage and failure analysis of 3D woven composites[D]. Harbin:Harbin Institute of Technology, 2019(in Chinese).
[21] TAN P, TONG L Y, STEVEN G P, et al. Behavior of 3D orthogonal woven CFRP composites. Part I. Experimental investigation[J]. Composites Part A:Applied Science and Manufacturing, 2000, 31(3):259-271.
[22] 张睿诚. 数字图像相关方法在应变测量中的应用研究[D]. 重庆:重庆大学, 2017. ZHANG R C. The application of digital image correlation method in strain measurement[D]. Chongqing:Chongqing University, 2017(in Chinese).
[23] 白晓虹. 数字图像相关(DIC)测量方法在材料变形研究中的应用[D]. 沈阳:东北大学, 2011. BAI X H. Application of digital image correlation method in study of material deformation[D]. Shenyang:Northeastern University, 2011(in Chinese).
[24] WANG Y, CHEN X G, YOUNG R, et al. A numerical and experimental analysis of the influence of crimp on ballistic impact response of woven fabrics[J]. Composite Structures, 2016, 140:44-52.
[25] MAQSOOD M, HUSSAIN T, NAWAB Y, et al. Prediction of warp and weft yarn crimp in cotton woven fabrics[J]. The Journal of the Textile Institute, 2015, 106(11):1180-1189.
[26] ZHOU G, SUN Q, LI D, et al. Effects of fabric architectures on mechanical and damage behaviors in carbon/epoxy woven composites under multiaxial stress states[J]. Polymer Testing, 2020, 90:106657.
[27] ZHOU G W, SUN Q P, MENG Z X, et al. Experimental investigation on the effects of fabric architectures on mechanical and damage behaviors of carbon/epoxy woven composites[J]. Composite Structures, 2021, 257:113366.
[28] 杨彩云, 李嘉禄. 三维机织复合材料力学性能的各向异性[J]. 复合材料学报, 2006, 23(2):59-64. YANG C Y, LI J L. Mechanical anisotropy of three dimensional woven composites[J]. Acta Materiae Compositae Sinica, 2006, 23(2):59-64(in Chinese).
[29] DAGGUMATI S, VOET E, PAEPEGEM W V, et al. Local strain in a 5-harness satin weave composite under static tension:Part I-Experimental analysis[J]. Composites Science and Technology, 2011, 71(8):1171-1179.
[30] DAI S, CUNNINGHAM P R, MARSHALL S, et al. Open hole quasi-static and fatigue characterisation of 3D woven composites[J]. Composite Structures, 2015, 131:765-774.
文章导航

/