航空发动机运行安全专栏

基于微波相位差测距的叶尖间隙动态测量方法

  • 牛广越 ,
  • 段发阶 ,
  • 周琦 ,
  • 刘志博
展开
  • 天津大学 精密测试技术及仪器国家重点实验室, 天津 300072

收稿日期: 2021-02-07

  修回日期: 2021-03-05

  网络出版日期: 2021-04-29

基金资助

国家科技重大专项(2017-V-0009);国家自然科学基金(51775377, 61971307, 61905175);国家重点研发计划项目(2020YFB2010800);中国航发四川燃气涡轮研究院外委课题(GJCZ-2020-0040, GJCZ-2020-0041); 霍英东教育基金会资助(171055);中国博士后科学基金(2020M680878); 广东省重点研发计划项目(2020B0404030001); 天津市科技计划项目(20YDTPJC01660)

A dynamic measurement method of blade tip clearance based on microwave phase difference ranging

  • NIU Guangyue ,
  • DUAN Fajie ,
  • ZHOU Qi ,
  • LIU Zhibo
Expand
  • State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China

Received date: 2021-02-07

  Revised date: 2021-03-05

  Online published: 2021-04-29

Supported by

National Science and Technology Major Project (2017-V-0009); National Natural Science Foundation of China (51775377, 61971307, 61905175); National Key Research and Development Plan Project (2020YFB2010800); Project of Foreign Affairs Committee of China Aviation Development Sichuan Gas Turbine Research Institute (GJCZ-2020-0040, GJCZ-2020-0041); Fok Ying Tung Education Foundation (171055); China Postdoctoral Science Foundation (2020M680878); Guangdong Province Key Research and Development Plan Project (2020B0404030001); Tianjin Science and Technology Plan Project (20YDTPJC01660)

摘要

叶尖间隙参数的非接触、高精度、在线测量是保证航空发动机工作效率和运行安全的关键, 传统的微波式叶尖间隙静态测量方法易受直流噪声干扰, 存在测距模糊问题, 信号采样点数时刻变化, 直接影响了测量精度。提出了一种基于微波相位差测距原理的叶尖间隙参数动态测量方法。建立了微波式叶尖间隙测量信号模型, 仿真分析了不同厚度以及凹腔叶片的信号强度和相位特征, 提出了一种相位区域自适应截取、尺度调整、相关匹配、多项式拟合相融合的技术手段, 解决了微波相位信号的测距模糊问题, 实现了相位信号峰值位置的预估, 减小了信号处理过程中的随机误差, 实现了叶尖间隙参数的高精度动态测量。研制了基于微波相位差测距的叶尖间隙测量系统原理样机, 在实验室环境下搭建了叶尖间隙信号动态测量的实验平台, 开展了测量和标定实验。实验结果验证了所提方法的有效性和准确性, 测量系统适用于不同厚度以及H形凹腔叶片的叶尖间隙参数测量, 在动叶片转速3 000 r/min的模拟工作环境下, 0.5~3 mm量程内, 不同厚度及H形凹腔叶片的叶尖间隙动态测量精度均优于40 μm; 且针对2 mm厚度的叶片, 当模拟的叶片转速高达24 000 r/min时, 0.5~3 mm量程内的测量精度仍然优于60 μm。

本文引用格式

牛广越 , 段发阶 , 周琦 , 刘志博 . 基于微波相位差测距的叶尖间隙动态测量方法[J]. 航空学报, 2022 , 43(9) : 625396 -625396 . DOI: 10.7527/S1000-6893.2021.25396

Abstract

Non-contact high-precision online measurement of blade tip clearance is the key to efficiency and safety of aeroengines. However, the traditional static measurement method based on microwave faces the problem of precision decline under the influence of direct current noise, distance measurement ambiguity, and variation of signal sampling time points. Therefore, a dynamic measurement method of blade tip clearance is proposed based on microwave phase difference ranging. A measurement signal model is established. The strength and phase signals of the blades with different thickness and cavity are simulated and analyzed. A new technical method combining techniques of phase region adaptive interception, scale adjustment, correlation matching, and polynomial fitting is proposed to realize high-precision dynamic measurement of blade tip clearance. The method can solve the ambiguity problem of microwave phase signal ranging, realize the estimation of the phase signal's peak position, and reduce random errors in the signal processing process. A prototype of blade tip clearance measurement is developed based on microwave phase difference ranging, and an experimental platform for dynamic measurement of the blade tip clearance signal is built in the laboratory to carry out measurement and calibration experiments. Experimental results verify the effectiveness and accuracy of the proposed method, which is applicable for measurement of blades of different thicknesses and H-form cavity. For the blade with different thickness and shape, the dynamic measurement accuracy of blade tip clearance is better than 40 μm over the range of 0.5 mm to 3 mm when the rotation speed of the blade is 3 000 r/min. For the blade with 2 mm thickness, the measurement accuracy is still better than 60 μm over the range of 0.5 mm to 3 mm when the speed is up to 24 000 r/min.

参考文献

[1] XU J H, QIAO B J, TENG G R, et al. Parameter identification of blade tip timing signal using compressed sensing[J/OL]. Acta Aeronautica et Astronautica Sinica, (2020-12-01)[2021-02-07]. https://kns.cnki.net/kcms/detail/11.1929.v.20201127.1707.010.html (in Chinese). 许敬晖, 乔百杰, 滕光蓉, 等. 基于压缩感知的叶端定时信号参数辨识方法[J/OL]. 航空学报, (2020-12-01)[2021-02-07]. https://kns.cnki.net/kcms/detail/11.1929.v.20201127.1707.010.html.
[2] LUO J Q, CHEN Z S, ZENG X. Robust aerodynamic design optimization of turbine cascades considering uncertainty of geometric design parameters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123826(in Chinese). 罗佳奇, 陈泽帅, 曾先. 考虑几何设计参数不确定性影响的涡轮叶栅稳健性气动设计优化[J]. 航空学报, 2020, 41(10): 123826.
[3] ZHAO F T, JING X D, YANG M S, et al. Experimental study of rotor blades vibration and noise in multistage high pressure compressor and their relevance[J]. Chinese Journal of Aeronautics, 2020, 33(3): 870-878.
[4] SUN H B, WANG J, CHEN K, et al. A tip clearance prediction model for multistage rotors and stators in aero-engines[J]. Chinese Journal of Aeronautics, 2021, 34(2): 343-357.
[5] WANG B, WU Y H. Vortex-dynamics mechanism of tip-region unsteady flow in compressor cascade[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 123881(in Chinese). 王博, 吴艳辉. 扩压叶栅叶尖非定常流动的涡动力学机理[J]. 航空学报, 2020, 41(11): 123881.
[6] ZHANG J L. Research on blade tip clearance and blade tip-timing measurement based on microwave sense[D]. Tianjin: Tianjin University, 2017: 13, 75(in Chinese). 张济龙. 基于微波传感的叶尖间隙及叶尖定时测量方法研究[D]. 天津: 天津大学, 2017: 13, 75.
[7] WISEMAN M W, GUO T H. An investigation of life extending control techniques for gas turbine engines[C]//Proceedings of the 2001 American Control Conference. Piscataway: IEEE Press, 2001: 3706-3707.
[8] WU J, WEN B, ZHANG Q, et al. A novel blade tip clearance measurement method based on event capture technique[J]. Mechanical Systems and Signal Processing, 2020, 139: 106626.
[9] LI Q Y, LI G, WEI Y T, et al. Review of aeroelasticity design for advanced fighter[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523430(in Chinese). 李秋彦, 李刚, 魏洋天, 等. 先进战斗机气动弹性设计综述[J]. 航空学报, 2020, 41(6): 523430.
[10] XIANG H H, GE N, GAO J, et al. Effect of circumferential non-uniform tip clearance on performance of axial compressor[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121491(in Chinese). 向宏辉, 葛宁, 高杰, 等. 周向非均匀叶尖间隙对轴流压气机性能的影响[J]. 航空学报, 2018, 39(2): 121491.
[11] YU B, KE H W, SHEN E Y, et al. A review of blade tip clearance-measuring technologies for gas turbine engines[J]. Measurement and Control, 2020, 53(3-4): 339-357.
[12] LU X, TAN Q L. A new type of microwave blade tip clearance sensor[J]. Micronanoelectronic Technology, 2020, 57(1): 49-53, 65(in Chinese). 路晓, 谭秋林. 一种新型微波叶尖间隙传感器[J]. 微纳电子技术, 2020, 57(1): 49-53, 65.
[13] ASLINEZHAD M, A HEJAZI M. Turbine blade tip clearance determination using microwave measurement and k-nearest neighbour classifier[J]. Measurement, 2020, 151: 107142.
[14] ZHANG J L, DUAN F J, NIU G Y, et al. A blade tip timing method based on a microwave sensor[J]. Sensors, 2017, 17(5): 1097.
[15] GRZYBOWSKI R, FOYT G, KNOELL H, et al. Microwave blade tip clearance measurement system[C]//Proceedings of ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, 2015.
[16] SCHICHT A, SCHWARZER S, SCHMIDT L P. Tip clearance measurement technique for stationary gas turbines using an autofocusing millimeter-wave synthetic aperture radar[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(6): 1778-1785.
[17] GEISHEIMER J, BILLINGTON S, BURGESS D. A microwave blade tip clearance sensor for active clearance control applications[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2004.
[18] KWAPISZ D, HAFNER M, QUELOZ S. Calibration and characterization of a CW radar for blade tip clearance measurement[C]//The 7th European Radar Conference. Piscataway: IEEE Press, 2010: 320-323.
[19] PERZ M, PRZYSOWA R, DZIECIOL E. Turbine blades and exhaust gas flow monitoring using microwave probe[C]//Proceedings of the Evaluation, Control and Prevention of High Cycle Fatigue in Gas Turbine Engines for Land, Sea and Air Vehicles, 2005: 24.
[20] PERZ M, PRZYSOWA R, DZIECIOL E. Turbojet engine blades health/maintenance monitoring using a microwave probe[C]//2006 International Conference on Microwaves, Radar & Wireless Communications. Piscataway: IEEE Press, 2006: 255-258.
[21] MASLOVSKIY A. Microwave turbine tip clearance measuring system for gas turbine engines[C]//Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air, 2009: 105-114.
[22] HOLMQUIST E B, JALBERT P L. Turbine blade tip clearance measurement instrumentation[C]//Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air, 2009: 605-611.
[23] GEISHEIMER J, HOLST T. Novel sensors to enable closed-loop active clearance control in gas turbine engines[C]//SPIE Defense+Security. Proc SPIE 9083, Micro-and Nanotechnology Sensors, Systems, and Applications VI, 2014, 9083: 211-220.
[24] WOIKE M, ABDUL-AZIZ A, CLEM M. Structural health monitoring on turbine engines using microwave blade tip clearance sensors[C]//SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring, 2014, 9062: 167-180.
[25] ABDUL-AZIZ A, WOIKE M R, ANDERSON R C, et al. Propulsion health monitoring assessed by microwave sensor performance and blade tip timing[C]//Smart Structures and NDE for Energy Systems and Industry 4.0. SPIE, 2019.
[26] MASLOVSKIY A, BAKULIN M, SNITKO M. Microwave blade tip clearance measurements: principles, current practices and future opportunities[C]//Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, 2013: 849-853.
[27] SCHICHT A, HUBER K, ZIROFF A, et al. Absolute phase-based distance measurement for industrial monitoring systems[J]. IEEE Sensors Journal, 2009, 9(9): 1007-1013.
[28] VIOLETTI M, SKRIVERVIK A K, XU Q, et al. New microwave sensing system for blade tip clearance measurement in gas turbines[C]//SENSORS, 2012 IEEE. Piscataway: IEEE Press, 2012: 1-4.
[29] PENG B, ZHOU W, ZHANG W L, et al. Self-calibration dual-probe microwave tip clearance test system: CN106501798A[P]. 2017-03-15(in Chinese). 彭斌, 周伟, 张万里, 等. 一种自校准的双探针微波叶尖间隙测试系统:CN106501798A[P]. 2017-03-15.
[30] DUAN F J, NIU G Y, ZHANG J L, et al. Moving blade tip gap and vibration parameter fusion measurement device based on microwave: CN107101600A[P]. 2017-08-29(in Chinese). 段发阶, 牛广越, 张济龙, 等. 基于微波的动叶片叶尖间隙和振动参数融合测量装置:CN107101600A[P]. 2017-08-29.
[31] BI C, SUN J H, XU C Y, et al. Study and application of tip clearance measurement technologies of aero en-gine[C]//Proceedings of The 7th Youth Science and Technology Forum of Chinese Aeronautical Society, 2016: 122-130(in Chinese). 毕超, 孙建华, 徐昌语, 等. 航空发动机叶尖间隙测量技术的研究与应用[C]//探索创新交流(第7集)——第七届中国航空学会青年科技论坛文集(上册), 2016: 122-130.
[32] WAGNER M, SCHULZE A, VOSSICK M, et al. Novel microwave vibration monitoring system for industrial power generating turbines[C]//1998 IEEE MTT-S International Microwave Symposium Digest. Piscataway: IEEE Press, 1998: 1211-1214.
[33] HOLST T A. Analysis of spatial filtering in phase-based microwave measurements of turbine blade tips[D]. At-lanta: Georgia Institute of Technology, 2005: 34-45.
[34] DENG C. Research on rotating blade tip clearance signal acquisition & high speed data acquisition & processing technology[D]. Tianjin: Tianjin University, 2018: 13-16(in Chinese). 邓澈. 旋转叶片叶尖间隙信号获取及高速采集处理技术研究[D]. 天津: 天津大学, 2018: 13-16.
[35] SUN H L, WU Y H, XIE X J. Research on influence factors of microwave measurement sensor calibration in rotation status[J]. Metrology & Measurement Technology, 2018, 38(1): 17-20(inChinese). 孙浩琳, 吴娅辉, 谢兴娟. 旋转状态下微波叶尖间隙传感器校准影响因素分析[J]. 计测技术, 2018, 38(1): 17-20.
[36] ZHANG J L, DUAN F J, NIU G Y. Blade tip clearance and blade tip timing measurement based on microwave sensors[J]. Control Engineering of China, 2019, 26(7): 1233-1238(in Chinese). 张济龙, 段发阶, 牛广越. 基于微波传感器的叶尖间隙与叶尖定时测量[J]. 控制工程, 2019, 26(7): 1233-1238.
[37] YANG J S, XU G L, DONG W D, et al. Study on the signal calibration of microwave blade tip clearance sensor[J]. Chinese Journal of Scientific Instrument, 2018, 39(10): 193-201(in Chinese). 杨季三, 徐贵力, 董文德, 等. 微波叶尖间隙传感器信号校准研究[J]. 仪器仪表学报, 2018, 39(10): 193-201.
[38] YAN R, CHEN W M, ZHANG P, et al. Influence of temperature on phase difference measurement accuracy in phase shift microwave ranging[J]. Journal of Electronic Measurement and Instrumentation, 2014, 28(2): 192-197(in Chinese). 严蓉, 陈伟民, 章鹏, 等. 温度对相位法微波测距测相精度的影响研究[J]. 电子测量与仪器学报, 2014, 28(2): 192-197.
[39] WU Y H, XIE X J, SUN H L. Research on measurement system for blade tip clearance based on microwave[J]. Metrology & Measurement Technology, 2016, 36(6): 37-39, 42(in Chinese). 吴娅辉, 谢兴娟, 孙浩琳. 微波间隙测量系统研究[J]. 计测技术, 2016, 36(6): 37-39, 42.
[40] GUAN S Y, RICE J A, LI C Z, et al. Automated DC offset calibration strategy for structural health monitoring based on portable CW radar sensor[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(12): 3111-3118.
[41] NIU G Y, DUAN F J, LIU Z B, et al. A high-accuracy non-contact online measurement method of the rotor-stator axial gap based on the microwave heterodyne structure[J]. Mechanical Systems and Signal Processing, 2021, 150: 107320.
[42] DING L F, GENG F L, CHEN J C. Radar principles[M]. 5th ed. Beijing: Publishing House of Electronics Industry, 2014: 188(in Chinese). 丁鹭飞, 耿富录, 陈建春. 雷达原理[M]. 5版. 北京: 电子工业出版社, 2014: 188.
[43] DENG C, YAN H, HUA B, et al. High speed acquisition and processing method for tip clearance signal based on FPGA[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(3): 104-110(in Chinese). 邓澈, 颜晗, 华波, 等. 基于FPGA的叶尖间隙信号高速采集与处理方法[J]. 电子测量与仪器学报, 2018, 32(3): 104-110.
[44] LI J, GUO G H, DUAN F J, et al. A novel self-adaptive, multi-peak detection algorithm for blade tip clearance measurement based on a capacitive probe[J]. Measurement Science and Technology, 2021, 32(8): 085006.
[45] YE D C, DUAN F J, JIANG J J, et al. Identification of vibration events in rotating blades using a fiber optical tip timing sensor[J]. Sensors, 2019, 19(7): 1482.
[46] CHEN H M, HAN W, XIONG B, et al. H-form blade tip clearance measurement in turbine rotor[J]. Gas Turbine Experiment and Research, 2012, 25(3): 49-53(in Chinese). 陈洪敏, 韩伟, 熊兵, 等. 涡轮转子H形叶片叶尖间隙测量[J]. 燃气涡轮试验与研究, 2012, 25(3): 49-53.
[47] LAVAGNOLI S, DE MAESSCHALCK C, ANDREOLI V. Design considerations for tip clearance control and measurement on a turbine rainbow rotor with multiple blade tip geometries[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(4): 042603.
文章导航

/