先进制造技术与装备专栏

飞机结构件轮廓特征加工自动分区算法

  • 高鑫 ,
  • 李仁政 ,
  • 王斌利 ,
  • 李卫东 ,
  • 赵中刚
展开
  • 航空工业成都飞机工业(集团)有限责任公司, 成都 610091

收稿日期: 2021-01-30

  修回日期: 2021-02-25

  网络出版日期: 2021-04-29

Automatic partition algorithm for profile feature machining of aircraft structural parts

  • GAO Xin ,
  • LI Renzheng ,
  • WANG Binli ,
  • LI Weidong ,
  • ZHAO Zhonggang
Expand
  • AVIC Chengdu Aircraft Industrial(Group) Co., Ltd., Chengdu 610091, China

Received date: 2021-01-30

  Revised date: 2021-02-25

  Online published: 2021-04-29

摘要

作为飞机结构件重要组成部分,轮廓特征包含大量复杂曲面,且与工艺凸台等干涉物相连接,使得轮廓特征编程需综合考虑复杂曲面及干涉物信息,在自动编程模式下,轮廓特征编程仍严重依赖人工经验,其编程周期占结构件编程周期的40%以上,严重影响了结构件编程效率。针对该问题,提出了一种综合考虑复杂曲面及干涉物信息的轮廓特征加工自动分区方法,基于相邻轮廓面连接边属性及凸边约束原则对轮廓面进行初分区,依据干涉物信息构建虚拟边界,并基于虚拟边界对轮廓面初分区结果进行横向和纵向加工区域划分,通过对划分区域进行合并得到轮廓特征加工分区结果。根据提出的方法开发了飞机结构件轮廓特征加工自动分区系统,经过多项典型飞机结构件测试,该方法稳定可靠,可为轮廓特征加工程序编制提供支撑。

本文引用格式

高鑫 , 李仁政 , 王斌利 , 李卫东 , 赵中刚 . 飞机结构件轮廓特征加工自动分区算法[J]. 航空学报, 2021 , 42(7) : 625346 -625346 . DOI: 10.7527/S1000-6893.2021.25346

Abstract

The profile feature of aircraft structural parts is connected with aerodynamic shapes, which contains a large number of complex surfaces. The process pad is mostly used for clamping, which results in numerous factors to be considered in profile feature programming. In the automatic programming mode, programming of profile features still relies heavily on manual labor, and the programming time of profile feature accounts for more than 40% of the whole programming time of the aircraft structural part. To address this problem, an automatic algorithm for profile feature partition considering the complex surface and interference objects information is proposed in this paper. First of all, the profile features are initially partitioned based on convex edge constraints and properties of connection edges between adjacent profile surfaces. Then, the virtual boundary is constructed based on the information of interference objects. The horizontal and longitudinal machining regions of the initial partition results are divided based on the virtual boundary. Finally, the partition results for profile feature machining are obtained by combining the divided regions. An automatic partition system for profile features of aircraft structural parts is developed based on the proposed method. Testing of many structural parts shows that the proposed method is stable and reliable, and can provide support for profile feature programming.

参考文献

[1] 高鑫, 李迎光, 张臣, 等. 飞机结构件内型转角一体加工刀轨生成方法[J]. 航空学报, 2014, 35(9):2660-2671. GAO X, LI Y G, ZHANG C, et al. An integrated machining tool path generation method for corner and profile of aircraft structural parts[J]. Acta Aeronautica et Astronautical Sinica, 2014, 35(9):2660-2671(in Chinese).
[2] 隋少春, 许艾明, 黎小华, 等. 面向航空智能制造的DT与AI融合应用[J]. 航空学报, 2020, 41(7):624173. SUI S C, XU A M, LI X H, et al. Fusion application of DT and AI for aviation intelligent manufacturing[J]. Acta Aeronautica et Astronautical Sinica, 2020, 41(7):624173(in Chinese).
[3] 刘长青, 李迎光, 王鹏程, 等. 复杂结构件数控编程加工特征用户自定义方法[J]. 航空学报, 2017, 38(6):420735. LIU C Q, LI Y G, WANG P C, et al. A user defined method for machining features in NC programming of complex structural parts[J]. Acta Aeronautica et Astronautical Sinica, 2017, 38(6):420735(in Chinese).
[4] 施建飞, 李迎光, 刘旭, 等. 基于属性边点图的飞机结构件筋特征识别方法[J]. 计算机集成制造系统, 2014, 20(3):521-529. SHI J F, LI Y G, LIU X, et al. Rib feature recognition method for aircraft structural parts based on vertex attributed adjacency graph[J]. Computer Integrated Manufacturing Systems, 2014, 20(3):521-529(in Chinese).
[5] 刘雪梅, 周易, 黄剑锋, 等. 基于制造资源的复杂箱体零件加工特征识别方法[J]. 计算机集成制造系统, 2015, 21(12):3166-3173. LIU X M, ZHOU Y, HUANG J F, et al. Machining feature recognition method for complicated boxy parts based on manufacturing resources[J]. Computer Integrated Manufacturing Systems, 2015, 21(12):3166-3173(in Chinese).
[6] 周敏, 郑国磊, 郑祖杰. 基于模糊推理的飞机结构件平顶筋自动识别方法[J]. 浙江大学学报(自然科学版), 2018, 52(3):591-598. ZHOU M, ZHENG G L, ZHENG Z J. Automatic recognition method based on fuzzy inference for planar-top rib in aircraft structural parts[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(3):591-598(in Chinese).
[7] LI Y G, DING Y F, MOU W P, et al. Feature recognition technology for aircraft structural parts based on a holistic attribute adjacency graph[J]. Proceedings of the Institution of Mechanical Engineers, Part B Journal of Engineering Manufacture, 2010, 224(2):271-278.
[8] LIU C Q, LI Y G, LI Z Y. A machining feature definition approach by using two-times unsupervised clustering based on historical data for process knowledge reuse[J]. Journal of Manufacturing Systems, 2018, 49:16-24.
[9] 张禹, 董小野, 李东升, 等. 基于STEP和改进神经网络的STEP-NC制造特征识别方法[J]. 航空学报, 2019, 40(7):422687. ZHANG Y, DONG X Y, LI D S, et al. Method for STEP-NC manufacturing feature recognition based on STEP and improved neural network[J]. Acta Aeronautica et Astronautical Sinica, 2019, 40(7):422687(in Chinese).
[10] XU S X, ANWER N, QIAO L H. Feature recognition for virtual machining[C]//The 21st International Conference on Industrial Engineering and Engineering Management 2014(IEEM 2014), 2014.
[11] YAN X, YAMAZAKI K, LIU J. Recognition of machining features and feature topologies from NC programs[J]. CAD Computer Aided Design, 2000, 32(10):605-616.
[12] ZHANG Z, JAISWAL P, RAI R. FeatureNet:Machining feature recognition based on 3D Convolution Neural Network[J]. Computer Aided Design, 2018, 101:12-22.
[13] 李春晖, 郑国磊, 陈树林. 飞机结构件加工域单元分层识别及构造方法[J]. 图学学报, 2014, 35(6):847-853. LI C H, ZHENG G L, CHEN S L. Slicingrecognition of machining volume unit for aircraft structural parts[J]. Journal of Graphics, 2014, 35(6):847-853(in Chinese).
[14] 周刚, 邬义杰, 潘晓弘. 基于Z-map模型的加工区域边界抽取算法研究[J]. 中国图象图形学报, 2019, 13(1):156-162. ZHOU G, WU Y J, PAN X H. Machiningregion boundary extraction algorithm based on Z-map model[J]. Journal of Image and Graphics, 2019, 13(1):156-162(in Chinese).
[15] 张鸣, 刘伟军, 杨红涛. 复杂型腔加工区域的自动识别[J]. 中国机械工程, 2010, 21(18):2224-2228. ZHANG M, LIU W J, YANG H T. Complexpocket milling region automatic identification method[J]. China Mechanical Engineering, 2010, 21(18):2224-2228(in Chinese).
[16] 张石磊, 李迎光, 刘长青, 等. 基于环分析的飞机结构件槽特征腹板精加工区域自动创建方法[J]. 中国机械工程, 2013, 24(13):28-33. ZHANG S L, LI Y G, LIU C Q, et al. Loop-analysis-based automatic creation method for bottom finish machining region of pocket feature in aircraft structural parts[J]. China Mechanical Engineering, 2013, 24(13):28-33(in Chinese).
[17] 郑祖杰, 周敏, 郑国磊, 等. 飞机结构件平顶筋顶面骨架分区计算方法[J]. 计算机集成制造系统, 2017, 23(11):2407-2413. ZHENG Z J, ZHOU M, ZHENG G L, et al. Skeleton computation method with sub-domain division for top planar surface of ribs in aircraft structural parts[J]. Computer Integrated Manufacturing Systems, 2017, 23(11):2407-2413(in Chinese).
[18] HEO E Y, KIM D W, LEE J Y, et al. High speed pocket milling planning by feature-based machining area partitioning[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(4):706-713.
[19] 刘少伟, 李迎光, 郝小忠, 等. 基于特征的蒙皮镜像铣加工残区刀轨优化方法[J]. 航空学报, 2016, 37(7):2295-2302. LIU S W, LI Y G, HAO X Z, et al, Feature-based uncut region tool path optimization method for skin parts machined by mirror milling system[J]. Acta Aeronautica et Astronautical Sinica, 2016, 37(7):2295-2302(in Chinese).
[20] 牟文平,隋少春,李迎光. 飞机结构件智能数控加工关键技术研究现状[J]. 航空制造技术, 2015(13):56-59. MOU W P, SUI S C, LI Y G. Key technology for intelligent NC machining of aircraft structural parts[J]. Intelligent Manufacturing Technology for Aviation Industry, 2015(13):56-59(in Chinese).
[21] ISO10303-224 Industrial automatic systems and integration-product data representation and exchange-application protocol:mechanical product definition for process planning using machining features[S]. 2006.
文章导航

/