流体力学与飞行力学

旋转爆震燃烧室梯度复合热防护结构热分析模型及验证

  • 田佳 ,
  • 张靖周 ,
  • 谭晓茗 ,
  • 王元帅
展开
  • 南京航空航天大学 能源与动力学院 航空飞行器热管理与能量利用工信部重点实验室, 南京 210016

收稿日期: 2021-01-15

  修回日期: 2021-02-09

  网络出版日期: 2021-04-29

基金资助

国家级项目

Thermal analysis model and validation for graded-composite thermal protection structure of rotating detonation combustor

  • TIAN Jia ,
  • ZHANG Jingzhou ,
  • TAN Xiaoming ,
  • WANG Yuanshuai
Expand
  • Key Laboratory of Thermal Management and Energy Utilization, Ministry of Industry and Information Technology, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2021-01-15

  Revised date: 2021-02-09

  Online published: 2021-04-29

Supported by

National Project

摘要

针对旋转爆震燃烧室高热流密度的热防护需求,提出了一种碳化硅耐烧蚀层-高硅氧烧蚀层-气凝胶隔热层-不锈钢金属基体层的梯度复合热防护结构,建立了考虑烧蚀的多层平壁一维瞬态热分析模型,结合旋转爆震燃烧室的典型热环境,采用动边界隐式差分计算格式求解获得了壁面输入热流密度和高硅氧烧蚀层主要参数对热防护结构内部温度分布的影响;同时开展了旋转爆震燃烧室梯度复合热防护结构热考核试验,对热分析模型进行了试验验证。研究结果表明:旋转爆震燃烧室壁面沿轴向温度分布存在着内在的不均匀性,前端由于预混气的及时补充而得到有效冷却,温度峰值出现在位于中截面和燃烧室出口的尾端区域。基于径向一维传热简化,从实测的旋转爆震燃烧室壁面轴向温度分布反演出时均热流密度沿程分布,并以此对特定轴向截面的热防护结构温度瞬态变化进行了分析,与试验结果的对比验证了所建立地考虑烧蚀过程的一维瞬态热分析模型可以较好地预测梯度复合热防护结构的温度变化特性。

本文引用格式

田佳 , 张靖周 , 谭晓茗 , 王元帅 . 旋转爆震燃烧室梯度复合热防护结构热分析模型及验证[J]. 航空学报, 2022 , 43(3) : 125271 -125271 . DOI: 10.7527/S1000-6893.2021.25271

Abstract

A graded-composite thermal protection structure composed of a SiC ablative layer, a high-silicon-oxygen ablation layer, an aerogels thermal insulation layer and a stainless-steel metal-based layer is proposed to meet the requirement of thermal protection on the high-heat-flux wall of rotating detonation combustors.A one-dimensional transient multi-layer thermal analysis model considering the ablation process is established.In combination with the typical thermal conditions of rotating detonation combustors and using the moving boundary implicit difference calculation scheme, we analyze the influences of input heat fluxes and main thermo-physical parameters of the high-silicon-oxygen ablation layer on temperature distribution of the graded-composite thermal protection structure.Furthermore, a thermal evaluation experiment is conducted for the specific graded-composite thermal protection structure on a rotating detonation combustor to validate the one-dimensional transient multi-layer thermal analysis model.It is revealed that the temperature distribution on the rotating detonation combustor wall exhibits an inherent un-uniformity along the axial direction.The front wall is effectively cooled because of the timely supplement of the premixed gas, and the peak temperature occurs in a specific region between the middle section and the combustor outlet.From the measured temperature distribution along the axial direction, the time-averaged thermal load distribution on the rotating detonation combustor wall is retrieved based on one-dimension radial heat transfer simplicity.With the retrieved thermal load, the temperature variation with time at a specific axial location is calculated and compared with the measured results.The comparison proves that the present one-dimensional transient multi-layer thermal analysis model with the integrity of the ablation process is able to provide a better prediction for temperature distribution on the graded-composite thermal protection structure.

参考文献

[1] 徐灿, 马虎, 李健, 等.旋转爆震发动机火焰与压力波传播特性[J].航空学报, 2017, 38(10):67-75. XU C, MA H, LI J, et al.Propagation property of flame and pressure wave in rotating detonation engine[J].Acta Aeronautica et Astronautica Sinca, 2017, 38(10):67-75(in Chinese).
[2] BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F.Continuous spin detonations[J].Journal of Propulsion and Power, 2006, 22(6):1204-1216.
[3] RUI Z, DAN W, WANG J P.Progress of continuous rotating detonation engines[J].Chinese Journal of Aeronautics, 2016, 29(1):15-29.
[4] ANAND V, GUTMARK E J.Rotating detonations and spinning detonations:similarities and differences[J].AIAA Journal, 2018, 56(5):1717-1722.
[5] ZHU D, FOX D S, MILLER R A, et al.Effect of surface impulsive thermal loads on fatigue behavior of constant volume propulsion engine combustor materials[J].Journal of Surface and Coatings Technology, 2004, 188-189:13-19.
[6] BYKOVSKII F A, VEDERNIKOV E F.Heat fluxes to combustor walls during continuous spin detonation of fuel-air mixture[J].Combustion, Explosion and Shock Waves, 2009, 45(1):70-77.
[7] ROY A, BEDICK C, STRAKEY P, et al.Development of a three-dimensional transient wall heat transfer model of a rotating detonation combustor:AIAA-2016-0902[R].Reston:AIAA, 2016.
[8] 徐擎轶, 孟皓, 张义宁, 等.旋转爆震发动机燃烧室热流和温度分布仿真分析[C]//中国航天第三专业信息网第三十九届技术交流会暨第三届空天动力联合会议,2018. XU Q Y, MENG H, ZHANG Y N, et al.Simulation analysis of heat flux and temperature distribution in rotating detonation combustor[C]//The 39th Technical Exchange Meeting and the 3nd Aerospace Power Joint Conference of China Aerospace Third Professional Information Network, 2018(in Chinese).
[9] GHOSN L J, ZHU D.Thermal barrier and protective coating to improve the durability of a combustor under a pulse detonation engine environment:AIAA-2007-2070[R].Reston:AIAA, 2007.
[10] COVINGTON M A, HEINERANN J M, GOLDSTAIN H E, et al.Performance of a low density ablative heat shield material[J].Journal of Spacecraft and Rockets, 2008, 45(4):854-864.
[11] 解维华, 韩国凯, 孟松鹤, 等.返回舱/空间探测器热防护结构发展现状与趋势[J].航空学报, 2019, 40(8):022792. XIE W H, HAN G K, MENG S H, et al.Development status and trend of thermal protection structure for return capsules and space probes[J].Acta Aeronautica et Astronautica Sinca, 2019, 40(8):022792(in Chinese).
[12] 王俊, 裴海龙, 王乃洲.基于再入轨迹和气动热环境的返回舱烧蚀研究[J].航空学报, 2014, 35(1):80-89. WANG J, PEI H L, WANG N Z.Research on ablation for crew return vehicle based on re-entry trajectory and aerodynamic heating environment[J].Acta Aeronautica et Astronautica Sinca, 2014, 35(1):80-89(in Chinese).
[13] HUANG H, SPADACCINI L J, SOBEL D R.Fuel-cooled thermal management for advanced aeroengines[J].ASME Journal of Engineering for Gas Turbines and Power, 2004, 126:284-293.
[14] TAN X M, ZHANG J Z, WANG X T.Effects of pulse detonation wave on film dynamics[J].Engineering Applications of Computational Fluid Mechanics, 2011, 5(4):499-505.
[15] WANG X T, ZHANG J Z, TAN X M.Experimental investigation on wall temperature of an air-breathing kerosene/air pulse detonation combustor with impingement cooling[J].Applied Thermal Engineering, 2012, 42:58-63.
[16] ZHU Y H, PENG W, XU R N, et al.Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J].Chinese Journal of Aeronautics, 2018, 31(10):1929-1953.
[17] LIN W S.Quasi-steady solutions for the ablation of charring materials[J].International Journal of Heat and Mass Transfer, 2007, 50(5-6):1196-1201.
[18] AMAR A J, BLACKWELL B F, EDWARDS J R.Development and verification of a one-dimensional ablation code including pyrolysis gas flow[J].Journal of Thermophysics and Heat Transfer, 2009, 23(1):59-71.
[19] LI W, HUANG H, TIAN Y, et al.Nonlinear analysis on thermal behavior of charring materials with surface ablation[J].International Journal of Heat and Mass Transfer, 2015, 84:245-252.
[20] 王潇敏.树脂基热防护材料烧蚀传热机理[D].合肥:中国科学技术大学, 2018:23-50. WANG X M.Mechanism and parameters analysis on ablative heat transfer of resin based thermal protection material[D].Hefei:University of Science and Technology of China, 2018:23-50(in Chinese).
[21] 孙冰, 刘小勇, 林小树, 等.固体火箭冲压发动机燃烧室热防护层烧蚀计算[J].推进技术, 2002, 23(5):375-378. SUN B, LIU X Y, LIN X S, et al.Computation of ablation of thermal-protection layer in solid rocket ramjet combustor[J].Journal of Propulsion Technology, 2002, 23(5):375-378(in Chinese).
[22] 徐善玮, 侯晓, 张宏安.固体火箭发动机内绝热层烧蚀质量损失计算[J].推进技术, 2003, 26(3):28-31. XU S W, HOU X, ZHANG H A.Calculation of internal insulation ablation mass loss of solid rocket motor[J].Journal of Propulsion Technology, 2003, 23(6):28-31(in Chinese).
[23] 张小英, 向红军.固体火箭发动机喷管传热与壁面烧蚀的耦合计算分析[J].固体火箭技术, 2018, 41(4):414-423. ZHANG X Y, XIANG H J.Coupled simulation of wall temperature and ablation with heat transfer in solid rocket nozzle[J].Journal of Solid Rocket Technology, 2018, 41(4):414-423(in Chinese).
[24] 刘建, 侯金丽, 张波, 等.高超声速组合循环发动机综合热管理技术需求分析[C]//中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议, 2017. LIU J, HOU J L, ZHANG B, et al.Requirement analysis of integrated thermal management technology for hypersonic combined cycle engine[C]//The 38th Technical Exchange Meeting and the 2nd Aerospace Power Joint Conference of China Aerospace Third Professional Information Network, 2017(in Chinese).
[25] SHI S B, WANG Y F, YAN L, et al.Coupled ablation and thermal behavior of an all-composite structurally integrated thermal protection system:fabrication and modeling[J].Composite Structures, 2020, 251:112623.
[26] RAMADAN K, Al-NIMR M A.Analysis of transient heat transfer in multilayer thin films with nonlinear thermal boundary resistance[J].International Journal of Thermal Sciences, 2009, 48(9):1718-1727.
[27] WANG X W, WEI K, TAO Y, et al.Thermal protection system integrating graded insulation materials and multilayer ceramic matrix composite cellular sandwich panels[J].Composite Structures, 2019, 209:523-534.
[28] WANG H, AN C, DUAN M L, et al.Transient thermal analysis of multilayer pipeline with phase change material[J].Applied Thermal Engineering, 2020, 165:114512.
[29] 李健, 张凡, 张丽娟, 等.一种耐高温多层热防护组件结构设计与性能研究[J].北京理工大学学报, 2019, 39(10):1051-1056. LI J, ZHANG F, ZHANG L J, et al.Structure design and performance study of a multi-layer thermal protection component with high temperature endurance[J].Transactions of Beijing Institute of Technology, 2019, 39(10):1051-1056(in Chinese).
[30] 田佳, 谭晓茗, 王元帅, 等.旋转爆震发动机燃烧室壁面烧蚀热防护研究[J/OL].推进技术, (2020-12-01)[2021-03-13].https://doi.org/10.13675/j.cnki.tjjs.200 225. TIAN J, TAN X M, WANG Y S, et al.Investigation on ablation thermal protection of combustor wall in a rotating detonation engine[J/OL].Journal of Propulsion Technology, (2020-12-01)[2021-03-13].https://doi.org/10.13675/j.cnki.tjjs.200225(in Chinese).
[31] 宫继双, 周林, 张义宁, 等.基于特征线理论的旋转爆震流场结构特征研究[J].实验流体力学, 2019, 33(1):89-96. GONG J S, ZHOU L, ZHANG Y N, et al.Investigation on flow field structure of rotating detonation using the method of characteristics[J].Journal of Experiments in Fluid Mechanics, 2019, 33(1):89-96(in Chinese).
文章导航

/