基于粘性涡粒子VVPM/沙粒DEM的直升机沙盲建模研究

  • 谭剑锋 ,
  • 何龙 ,
  • 于领军 ,
  • 周国臣
展开
  • 1. 南京工业大学
    2.
    3. 中国人民解放军陆军航空兵学院

收稿日期: 2021-03-19

  修回日期: 2021-04-16

  网络出版日期: 2021-04-27

基金资助

国家自然科学基金;装备预研国防科技重点实验室基金;旋翼空气动力学重点实验室基金

Invesigtation on Method of Helicopter Brownout with Viscous Vortex Particle and Sand Particle DEM

  • TAN Jian-Feng ,
  • HE Long ,
  • YU Ling-Jun ,
  • ZHOU Guo-Chen
Expand

Received date: 2021-03-19

  Revised date: 2021-04-16

  Online published: 2021-04-27

摘要

直升机“沙盲”现象阻挡飞行员视线,导致直升机垂直起降、贴地飞行困难,甚至引发飞行事故。为研究直升机的“沙盲”特性,建立基于离散动力学的沙粒DEM模型和沙粒-流场耦合模型,嵌入旋翼粘性涡粒子和粘性地面气动模型,体现旋翼流场作用下沙粒移动、碰撞等特性,构建直升机“沙盲”现象计算方法。通过与美国陆军Yuma试验场EH-60L“沙盲”飞行试验结果对比,结果表明本文“沙盲”计算方法得到的“沙云”形状、扬起位置、高度、变化过程与飞行试验测量结果基本一致,且相比于基于沙粒夹带模型、沙粒起跳模型、速度罚值沙粒通量模型的拉格朗日沙粒跟踪方法,本文方法得到的“沙云”轮廓精度更高,与飞行测量结果更吻合。随后研究悬停和前飞状态“沙盲”形成特性,结果表明旋翼桨尖涡与地面干扰形成地面射流,推动沙粒移动堆积,诱发沙粒碰撞起跳,并在旋翼/地面干扰流场作用下扬起形成沙云,覆盖直升机前方视野,构成“沙盲”现象。

本文引用格式

谭剑锋 , 何龙 , 于领军 , 周国臣 . 基于粘性涡粒子VVPM/沙粒DEM的直升机沙盲建模研究[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.21.25536

Abstract

Helicopter brownout blocks out pilots’ sight resulting in difficulty of landing and nap-of-the-earth flight, and induces flight accidents. A sand particle discrete element method (DEM) model based on discrete dynamics and sand particle-flow interaction model are established and coupled with rotor viscous vortex particle model and viscous ground aerodynamic model to account for translation and collision of sand particles under the effect of rotor flow field, and an analysis method of helicopter brownout is then proposed to analyze the characteristics of helicopter brownout. The flight test of EH-60L brownout in the US Army Yuma Proving Ground is used to comparison. It is shown that the predicted shape, position and height of uplift, process of the sand cloud are consist with the flight test. Compared with the Lagrangian dust cloud simulation based on splash entrainment, process of bombardment, particle flux and threshold velocity with assumption, the predicted profile of the sand cloud is more accurate, and compared best with the flight test. Then, the processes of brownout of helicopter in hover and forward are investigated. It is shown that wall jet induced by rotor tip-vortex and ground interaction yields translation and sediment trapping of sand, and it also induces bombardment ejection and saltation. Uplift of sediment induced by the flowfield generates dust cloud, and covers front view of helicopter, and thus forms brownout.

参考文献

[1] Acquisition and Technology Programs Task Force (ATP TF).Department of Defense Aviation Safety Technologies Report[R]. Washington, DC: Defense Safety Oversight Council, Office of the Under Secretary of Defense for Personnel and Readiness, 2009: 22-23
[2] WHITEHOUSE G R, WACHSPRESS D A, QUACKENBUSH T R, KELLER J D.Exploring aerody-namic methods for mitigating brownout[C]//The American Helicopter Society 65th Annual Forum, Alexandria, AHS, 2009: 349-364.
[3] TRITSCHLER J K, SYAL M, CELI R, LEISHMAN J G.A methodology for rotorcraft brownout mitigation using rotor design optimization[C]// The American Helicopter Society 66th Annual Forum, Alexandria, AHS, 2010: 1674-1690.
[4]Wong O D, TANNER P E.Photogrammetric measure-ments of an EH-60L brownout cloud[J].Journal of the American Helicopter Society, 2016, 61(1):1-10
[5] SYDNEY A, LEISHMAN J G.Measurements of ro-tor/airframe interactions in ground effect over a sediment bed[C]//The American Helicopter Society 69th Annual Fo-rum, Alexandria, AHS, 2013.
[6]MILLUZZO J I, LEISHMAN J G.Vortical sheet behavior in the wake of a rotor in ground effect[J].AIAA Journal, 2017, 55(1):24-35
[7] WACHSPRESS D A, QUACKENBUSH T R, BOSCHITSCH A H.First-principles, free-vortex wake model for helicopters and tiltrotors[C]//The American Helicopter Society 59th Annual Forum, Alexandria, AHS, 2003: 307-330.
[8] WACHSPRESS D A, WHITEHOURSE G R, KELLER J D, YU K.A high fidelity brownout model for real-time flight simulations and trainers[C]//The American Helicopter Society 65th Annual Forum, Alexandria, AHS, 2009: 1281-1304.
[9] ANDREA A D.Numerical analysis of unsteady vortical flows generated by a rotorcraft operating on ground: a first assessment of helicopter brownout[C]//The American Helicopter Society 65th Annual Forum, 2009: 423-446.
[10] KELLER J D, WHITEHOUSE G R, WACHSPRESS D A, TESKE M E, QUACKENBUSH T R.A physics-based model of rotorcraft brownout for flight simulation appli-cations[C]//The American Helicopter Society 62nd Annual Forum, Alexandria, AHS, 2006: 1097-1107.
[11]Syal M, Leishman J G.Predictions of brownout dust clouds compared to photogrammetry measurements[J].Journal of the American Helicopter Society, 2013, 58(2):1-18
[12] GOVINDARAJAN B, LEISHMAN J G.Predictions of rotor and rotor/airframe configurational effects on brown-out dust clouds[C]//The American Helicopter Society 70th Annual Forum, Montreal, Alexandria, AHS, 2014: 407-433.
[13]胡健平, 徐国华, 史勇杰, 吴林波.基于-耦合数值模拟的全尺寸直升机沙盲形成机理[J].航空学报, 2020, 41(3):159-173
[14]HU J P, XU G H, SHI Y J, et al.Formation mechanism of brownout in full-scale helicopter based on CFD-DEM couplings numerical simulation[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(3):123363-173
[15]TAN J F, SUN Y M, BARAKOS, G N.Vortex approach for downwash and outwash of tandem rotor in ground ef-fect[J].Journal of Aircraft, 2018, 55(6):2491-2509
[16]谭剑锋, 周天熠, 王畅, 于领军.旋翼地面效应的气动建模与特性[J].航空学报, 2019, 40(6):122602-12
[17]TAN J F, ZHOU T Y, WANG C, et al.Aerodynamic model and characteristics of rotor in ground effect[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(6):122602-12
[18]TAN J F, CAI J G, BARAKOS G N, Wang C, Huang M Q.Computational study on the aerodynamic interference between tandem rotors and nearby obstacles[J].Journal of Aircraft, 2020, 57(3):456-468
[19]谭剑锋, 王浩文, 吴超, 林长亮.基于非定常面元粘性涡粒子混合法的旋翼平尾非定常气动干扰研究[J].航空学报, 2014, 35(3):643-656
[20]TAN J F, WANG H W, WU C, LIN C L.Ro-torempennage unsteady aerodynamic interaction with unsteady panelviscous vortex particle hybrid method[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(3):643-656
[21] CUNDALL P A, STRACK O D L.A discrete numerical model for granular assemblies[J][J].Geotechnique, 1979, 29(1): 47-65
[22] MINDLIN R D, DERESIEWICZ H.Elastic spheres in contact under varying oblique forces[J]. [J].Transactions of ASME, Series E. Journal of Applied Mechanics,, 1993, , 20(1):327-344
[23] RENZO A D, MAIO F P D.Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J]. [J].Chemical Engineering Science,, 2004, , 59:(1):525-541.
[24] Lee, T.E., Leishman, J. G., and Ramasamy, M. Fluid dynamics of interacting blade tip vortices with a ground plane[J].[J].Journal of the American Helicopter Society,, 2010, 55(2):22005-1, -22005-16.
[25] Lakshminarayan, V.K., Kalra, T. S., Baeder, J. D. De-tailed computational investigation of a hovering microscale rotor in ground effect[J]. [J].AIAA Journal,, 2013; , 51 (4):893-909.
文章导航

/