流体力学与飞行力学

基于动态RCS特征相似的直升机靶机旋翼设计

  • 费钟阳 ,
  • 蒋相闻 ,
  • 招启军
展开
  • 南京航空航天大学 直升机旋翼动力学国家级重点实验室, 南京 210016

收稿日期: 2021-03-10

  修回日期: 2021-04-22

  网络出版日期: 2021-04-27

基金资助

江苏高校优势学科建设工程资助项目(PAPD)

Design of helicopter target rotor based on similar dynamic RCS characteristics

  • FEI Zhongyang ,
  • JIANG Xiangwen ,
  • ZHAO Qijun
Expand
  • National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2021-03-10

  Revised date: 2021-04-22

  Online published: 2021-04-27

Supported by

A Project Funded by the Priority Academic Program Develspment of Jiangsu Higher Education Institution (PAPD)

摘要

为获得具备全尺寸直升机旋翼动态雷达散射截面(RCS)特征的靶机相似性设计方案,首先建立适用于动态旋翼雷达回波信号提取与分析的RCS高频预估方法和时频分析方法。其次,开展了旋翼参数对其RCS时频域谱中的微多普勒特征和信号强度的影响特性研究。然后,推导得到反比形式的旋翼雷达最大微多普勒频移的相似性条件,发现依据相似性条件设计较小半径、较少桨叶片数的靶机旋翼能够模拟出目标旋翼的雷达微多普勒特征,进一步通过改变翼型厚度能够使靶机旋翼具有与目标旋翼接近的RCS信号强度。最后,综合对比不同设计方案的靶机旋翼动态RCS的频域和时域特征,提出模拟目标旋翼雷达散射特性的择优方案:雷达最大微多普勒频移相同、RCS强度相似性误差小于0.408 dB,实现了靶机旋翼对目标旋翼RCS时频特征相似性的设计。

本文引用格式

费钟阳 , 蒋相闻 , 招启军 . 基于动态RCS特征相似的直升机靶机旋翼设计[J]. 航空学报, 2022 , 43(7) : 125465 -125465 . DOI: 10.7527/S1000-6893.2021.25465

Abstract

This study aims to obtain a helicopter target design scheme with similar rotor dynamic Radar Cross Section (RCS) characteristics of full-scale helicopters. An RCS high-frequency prediction method and a time-frequency analysis method suitable for extraction and analysis of dynamic rotor radar echo signals are firstly established. Then, the effects of the rotor parameters on the micro-Doppler characteristics and amplitude of the rotor RCS are studied, and the similarity conditions for the maximum rotor radar micro-Doppler frequency derived. It is found that by designing the target rotor with a smaller radius and blade number according to the similarity conditions, the maximum radar micro-Doppler frequency characteristics of the target rotor could be similar to those of the goal rotor, and further changes in the airfoil thickness could match the target rotor dynamic RCS time domain signal strength. Finally, the dynamic RCS frequency domain and time domain characteristics of different rotors are comprehensively compared, and the optimal scheme to simulate the radar scattering characteristics of the goal rotor proposed (the maximum radar micro-Doppler frequency being the same, and the error of RCS intensity being less than 0.408 dB) so as to realize the goal of similarity design of the target helicopter rotor RCS time-frequency characteristics.

参考文献

[1] 郭彪,孔小林,孙寒骁,等.直升机雷达特性模拟方法研究[J].航空科学技术, 2019, 30(7):57-61. GUO B, KONG X L, SUN H X, et al. RCS simulation method research for helicopter[J]. Aeronautical Science&Technology, 2019, 30(7):57-61(in Chinese).
[2] 郭杰,殷红成,叶尚军,等.直升机旋翼电磁特性模拟新技术[J].航空学报, 2019, 40(7):322732. GUO J, YIN H C, YE S J, et al. Novel technology for electromagnetic characteristic simulation of helicopter blades[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):322732(in Chinese).
[3] CLEMENTE C, SORAGHAN J J. GNSS-based passive bistatic radar for micro-Doppler analysis of helicopter rotor blades[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1):491-500.
[4] YUAN B, CHEN Z P, XU S Y. Micro-Doppler analysis and separation based on complex local mean decomposition for aircraft with fast-rotating parts in ISAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):1285-1298.
[5] POULIGUEN P, DAMIENS J F,MOULINET R. Radar signatures of helicopter rotors in great bistatism[C]//IEEE Antennas and Propagation Society International Symposium. Piscataway:IEEE, 2003:536-539.
[6] 蒙志君,吕明云,武哲.动态桨叶RCS特性的实验研究[J].北京航空航天大学学报, 2006, 32(9):1003-1006. MENG Z J,LV M Y, WU Z. Experimental investigation on RCS characteristics of rotating blades[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(9):1003-1006(in Chinese).
[7] 陈行勇,王祎,陈海坚.直升机目标微多普勒分析和仿真[J].电子信息对抗技术, 2009, 24(6):25-28, 72. CHENX Y, WANG Y, CHEN H J. Micro-Doppler analysis and simulation of a helicopter target[J]. Electronic Information Warfare Technology, 2009, 24(6):25-28, 72(in Chinese).
[8] 蒋相闻,招启军,孟晨.直升机旋翼桨叶外形对雷达特征信号的影响[J].航空学报, 2014, 35(11):3123-3136. JIANG X W, ZHAO Q J, MENG C. Effect of helicopter rotor blade shape on its radar signal characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):3123-3136(in Chinese).
[9] JIANG X W, ZHAO Q J, ZHAO G Q, et al. Integrated optimization analyses of aerodynamic/stealth characteristics of helicopter rotor based on surrogate model[J]. Chinese Journal of Aeronautics, 2015, 28(3):737-748.
[10] ZHOU Z Y, HUANG J, WANG J J. Electromagnetic scattering characteristics of coaxial helicopter based on dynamic transformation method[J]. Chinese Journal of Aeronautics, 2021, 34(2):516-528.
[11] 李建周,刘祥威,范超群,等.多自由度飞行目标动态建模及其散射特性分析[J].系统工程与电子技术, 2019, 41(11):2401-2407. LI J Z, LIU X W, FAN C Q, et al. Geometric modeling and scattering characteristics analysis of multi-degree-of-freedom flying targets[J]. Systems Engineering and Electronics, 2019, 41(11):2401-2407(in Chinese).
[12] 丁国如,孙佳琛,王海超,等.复杂电磁环境下频谱智能管控技术探讨[J].航空学报, 2021, 42(4):524750. DING G R, SUN J C, WANG H C, et al. Discussion on technologiesfor intelligent spectrum management and control under complex electromagnetic environments[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524750(in Chinese).
[13] SU F L, DA XIAO, GAO J J. Method for reducing micro-Doppler effect in aircraft ISAR imaging based on compressed sensing[J]. Electronics Letters, 2013, 49(24):1562-1564.
[14] PERSSON B, BULL P. Empirical study of flight-dynamicinfluences on radar cross-section models[J]. Journal of Aircraft, 2016, 53(2):463-474.
[15] CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar:Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1):2-21.
[16] KNOTT E F, TULEY M T, SHAEFFER J F. Radar cross section[M]. 2nd ed. Mendnam:SciTech Publishing Press, 2004.
[17] LIU Z H, HUANG P L, WU Z, et al. Improvement and performance of parallel multilevel fast multipole algorithm[J]. Journal of Systems Engineering and Electronics, 2011, 22(1):164-169.
[18] 周琳,黄江涛,高正红.基于离散伴随方程的三维雷达散射截面几何敏感度计算[J].航空学报, 2020, 41(5):623361. ZHOU L, HUANG J T, GAO Z H. Three dimensional radar cross section geometricsensitivity calculation based on discrete adjoint equation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623361(in Chinese).
[19] 张伟,高正红,周琳,等.基于代理模型全局优化的自适应参数化方法[J].航空学报, 2020, 41(10):123815. ZHANG W, GAO Z H, ZHOU L,et al. Adaptive parameterization method for surrogate-based global optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10):123815(in Chinese).
[20] 张哲,吴剑,代冀阳,等.基于改进A-Star算法的隐身无人机快速突防航路规划[J].航空学报, 2020, 41(7):323692. ZHANG Z, WU J, DAI J Y,et al. Fast penetration path planning for stealth UAV based on improved A-Star algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):323692(in Chinese).
[21] KNOTT E F. A progression of high-frequency RCS prediction techniques[J]. Proceedings of the IEEE, 1985, 73(2):252-264.
[22] KLEMENT D, PREISSNER J, STEIN V. Special problems in applying the physical optics method for backscatter computations of complicated objects[J]. IEEE Transactions on Antennas and Propagation, 1988, 36(2):228-237.
[23] YOUSSEF N N. Radar cross section of complex targets[J]. Proceedings of the IEEE, 1989, 77(5):722-734.
[24] MICHAELI A.Equivalent edge currents for arbitrary aspects of observation[J]. IEEE Transactions on Antennas and Propagation, 1984, 32(3):252-258.
[25] 叶少波,熊峻江.直升机旋翼桨叶动态RCS特性研究[J].航空学报, 2006, 27(5):816-822. YE S B, XIONG J J. Dynamic RCS behavior of helicopter rotating blades[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5):816-822(in Chinese).
[26] YOON S H, KIM B, KIM Y S. Helicopterclassification using time-frequency analysis[J]. Electronics Letters, 2000, 36(22):1871.
[27] 王英,彭尧坤,刘飞亮,等.旋翼微多普勒特性实验分析[J].北京航空航天大学学报, 2014, 40(7):916-920. WANG Y, PENG Y K, LIU F L, et al. Experimental analysis on micro-Doppler characteristics of rotors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(7):916-920(in Chinese).
[28] 谭源泉,王厚军,李良超,等.基于旋翼结构微多普勒特征的目标识别方法[J].电波科学学报, 2013, 28(1):50-55. TAN Y Q, WANG H J, LI L C, et al. Target identification method based on rotor structure micro-Doppler characteristics[J]. Chinese Journal of Radio Science, 2013, 28(1):50-55(in Chinese).
[29] CLEMENTE C. The micro-Doppler effect in radar[J]. The Aeronautical Journal, 2012, 116(1176):221.
[30] LI P, WANG D C, WANG L. Separation of micro-Doppler signals based on time frequency filter and Viterbi algorithm[J]. Signal, Image and Video Processing, 2013, 7(3):593-605.
[31] 马东立.翼形几何参数对机翼散射特性的影响[J].北京航空航天大学学报, 1998, 24(2):197-199. MA D L. Effects of airfoil geometric parameters on wing's scattering characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(2):197-199(in Chinese)
[32] 张宇杭,韩东,万浩云.桨叶分段线性扭转对旋翼性能的提升[J/OL].航空学报,(2021-03-30)[2021-04-15]. http://kns.cnki.net/kcms/detail/11.1929.V.20210326.1702.012.html (in Chinese). ZHANG Y H, HAN D, WAN H Y. Rotor performance improvement by blade piecewise linear twist[J/OL]. Acta Aeronautica et Astronautica Sinica,(2021-03-30)[2021-04-15]. http://kns.cnki.net/kcms/detail/11.1929.V.20210326.1702.012.html (in Chinese).
[33] 陈亚萍,喻溅鉴,胡磊,等.直升机旋翼轴弯矩特征及应用[J].航空学报, 2021, 42(5):524168. CHEN Y P, YU J J, HU L, et al.Characteristics and application of bending moments of helicopter rotor shaft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524168(in Chinese).
文章导航

/