电子电气工程与控制

递进式路径转移姿态机动快速规划方法

  • 王卓 ,
  • 徐瑞 ,
  • 李朝玉
展开
  • 1. 北京理工大学 宇航学院, 北京 100081;
    2. 深空自主导航与控制工业和信息部重点实验室, 北京 100081

收稿日期: 2021-01-21

  修回日期: 2021-03-10

  网络出版日期: 2021-04-27

基金资助

国家重点研发计划(2019YFA0706500,2020YFC2200902);国家自然科学基金(U20376020,61976020);民用航天预研项目(MYHT201705)

Rapid attitude maneuver planning method based on progressive path transfer

  • WANG Zhuo ,
  • XU Rui ,
  • LI Zhaoyu
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Key Laboratory of Navigation and Control for Deep Space Exploration, Ministry of Industry and Information Technology, Beijing 100081, China

Received date: 2021-01-21

  Revised date: 2021-03-10

  Online published: 2021-04-27

Supported by

National Key R&D Program of China (2019YFA0706500, 2020YFC2200902); National Natural Science Foundation of China (U20376020, 61976020); the Civil Aerospace Technology Research Project of China (MYHT201705)

摘要

当前空间探测活动需要航天器具有大角度姿态机动能力,然而复杂的空间环境和航天器姿态约束限制了姿态机动的可行空间和姿态规划效率。针对这一问题,进行了多约束条件下大角度姿态机动快速规划研究,提出一种基于路径转移策略的快速规划方法。该方法由参考路径规划、松弛路径规划和路径转移规划3部分组成,递进式处理姿态规划中的初始参考路径生成、姿态有界约束满足和姿态指向约束满足问题。在路径转移规划中,建立基于指向角的姿态指向约束评价函数,设计对应的转移动作集合,能够快速得到满足多种约束条件的安全机动路径。最后,通过大角度姿态机动对比仿真,验证了该方法在机动时间方面的快速性和规划速度方面的高效性。

本文引用格式

王卓 , 徐瑞 , 李朝玉 . 递进式路径转移姿态机动快速规划方法[J]. 航空学报, 2022 , 43(5) : 325308 -325308 . DOI: 10.7527/S1000-6893.2021.25308

Abstract

Large angle attitude maneuver is a common task in current space missions. However, the complex space environment and spacecraft attitude constraints limit the feasible space of attitude maneuver and the efficiency of attitude planning. To solve this problem, this paper studies the rapid planning of large angle attitude maneuver based on multiple constraints, and proposes a rapid planning method based on path transfer strategy. The method is composed of three parts:reference path planning, relaxation path planning, and path transfer planning. The problems of initial reference path generation, attitude bounded constraint satisfaction and attitude pointing constraint satisfaction in attitude planning are dealt with step by step. In path transfer planning, the attitude pointing constraint evaluation function is established based on the pointing angle and the corresponding transfer action set is designed, which can quickly obtain the safe maneuver path satisfying various constraint conditions. Simulation of large angle attitude maneuver shows that the method proposed is fast in terms of maneuver time and efficient in terms of planning speed.

参考文献

[1] KAWAJIRI S, MATUNAGA S. A low-complexity attitude control method for large-angle agile maneuvers of a spacecraft with control moment gyros[J]. Acta Astronautica, 2017, 139:486-493.
[2] WU Y H, HAN F, HUA B, et al. Null motion strategy for spacecraft large angle agile maneuvering using hybrid actuators[J]. Acta Astronautica, 2017, 140:459-468.
[3] 王立, 孙秀清, 张春明, 等. 一种全天时星跟踪器相对惯导的安装阵在线快速估计方法[J]. 航空学报, 2020, 41(8):624117. WANGL, SUN X Q, ZHANG C M, et al. Fast online estimation method for installing matrix between all-time star tracker and inertial navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):624117(in Chinese).
[4] WANG Z, XU R, ZHU S Y, et al. Integration planning of gimbal angle and attitude motion for zero propellant maneuver under attitude and control moment gyroscope constraints[J]. Acta Astronautica, 2020, 172:123-133.
[5] WU C Q, XU R, ZHU S Y, et al. Time-optimal spacecraft attitude maneuver path planning under boundary and pointing constraints[J]. Acta Astronautica, 2017, 137:128-137.
[6] WALLSGROVE R J, AKELLA M R. Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5):957-963.
[7] 夏冬冬, 岳晓奎. 基于浸入与不变理论的航天器姿态跟踪自适应控制[J]. 航空学报, 2020, 41(2):323428. XIAD D, YUE X K. Immersion and invariance based attitude adaptive tracking control for spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):323428(in Chinese).
[8] 郭延宁, 李传江, 马广富. 基于势函数法的航天器自主姿态机动控制[J]. 航空学报, 2011, 32(3):457-464. GUO Y N, LI C J, MA G F. Spacecraft autonomous attitude maneuver controlby potential function method[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3):457-464(in Chinese).
[9] 武长青, 徐瑞, 朱圣英, 等. 非凸二次约束下航天器姿态机动路径迭代规划方法[J]. 宇航学报, 2016, 37(6):671-678. WU C Q, XU R, ZHU S Y, et al. Spacecraft attitude maneuver path iterative planning method under nonconvex quadratic constraints[J]. Journal of Astronautics, 2016, 37(6):671-678(in Chinese).
[10] 仲维国, 崔平远, 崔祜涛. 航天器复杂约束姿态机动的自主规划[J]. 航空学报, 2007, 28(5):1091-1097. ZHONG W G, CUI P Y, CUI H T. Autonomousattitude maneuver planning for spacecraft under complex constraints[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1091-1097(in Chinese).
[11] KJELLBERG H C, LIGHTSEY E G. Discretized constrained attitude pathfinding and control for satellites[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(5):1301-1309.
[12] MCLNNES C R. Large angle slew maneuvers with autonomous Sun vector avoidance[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(4):875-877.
[13] 程小军, 崔祜涛, 崔平远, 等. 具有非凸约束的航天器姿态机动预测控制[J]. 宇航学报, 2011, 32(5):1070-1076. CHENG X J, CUI H T, CUI P Y, et al. A predictive control algorithm for spacecraft attitude maneuver with nonconvex geometric constraint[J]. Journal of Astronautics, 2011, 32(5):1070-1076(in Chinese).
[14] SPILLER D, ANSALONE L, CURTI F. Particle swarm optimization for time-optimal spacecraft reorientation with keep-out cones[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(2):312-325.
[15] SPILLER D, MELTON R G, CURTI F. Inverse dynamics particle swarm optimization applied to constrained minimum-time maneuvers using reaction wheels[J]. Aerospace Science and Technology, 2018, 75:1-12.
[16] HABLANI H B. Attitude commands avoiding bright objects and maintaining communication with ground station[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(6):759-767.
[17] KUFFNER J J, LAVALLE S M. RRT-connect:An efficient approach to single-query path planning[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat.No.00CH37065). Piscataway:IEEE Press, 2000:995-1001.
[18] FRAZZOLI E, DAHLEH M A, FERON E. Real-time motion planning for agile autonomous vehicles[C]//Proceedings of the 2001 American Control Conference. (Cat.No.01CH37148). Piscataway:IEEE Press, 2001:43-49.
[19] XU R, WANG H, XU W M, et al. Rotational-path decomposition based recursive planning for spacecraft attitude reorientation[J]. Acta Astronautica, 2018, 143:212-220.
[20] XU R, WU C Q, ZHU S Y, et al. A rapid maneuver path planning method with complex sensor pointing constraints in the attitude space[J]. Information Systems Frontiers, 2017, 19(4):945-953.
[21] SCHLANBUSCH R, KRISTIANSEN R, NICKLASSON P J. On choosing quaternion equilibrium point in attitude stabilization[C]//2010 IEEE Aerospace Conference. Piscataway:IEEE Press, 2010:1-6.
文章导航

/