固体力学与飞行器总体设计

面向直升机抗坠毁的新型夹心八边形蜂窝设计、仿真和理论研究

  • 王佳铭 ,
  • 李志刚 ,
  • 梁方正 ,
  • 刘婉婷 ,
  • 廖就 ,
  • 陈芳育 ,
  • 李萌 ,
  • 邵特立
展开
  • 1. 北京交通大学 机械与电子控制工程学院, 北京 100044;
    2. 中国直升机设计研究所, 景德镇 333001;
    3. 中国空间技术研究院 钱学森空间技术实验室, 北京 100094;
    4. 交控科技股份有限公司, 北京 100070

收稿日期: 2021-01-11

  修回日期: 2021-03-18

  网络出版日期: 2021-04-27

基金资助

北京市自然科学基金(L201010,L212024)

Design, simulation and theoretical study on novel cored octagon honeycomb for helicopter crashworthiness

  • WANG Jiaming ,
  • LI Zhigang ,
  • LIANG Fangzheng ,
  • LIU Wanting ,
  • LIAO Jiu ,
  • CHEN Fangyu ,
  • LI Meng ,
  • SHAO Teli
Expand
  • 1. School of Mechanical, Electronic and Control Engineering, Beijing Jiao Tong University, Beijing 100044, China;
    2. China Helicopter Research and Development Institute, Jingdezhen 333001, China;
    3. Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China;
    4. Traffic Control Technology Co., Ltd., Beijing 100070, China

Received date: 2021-01-11

  Revised date: 2021-03-18

  Online published: 2021-04-27

Supported by

Beijing Natural Science Foundation(L201010, L212024)

摘要

提出了一种吸能更加优秀的新型夹心八边形蜂窝。首先,建立了可快速预测夹心八边形蜂窝轴向压缩平台应力的理论模型,并对八边形和内嵌四边形蜂窝边长的变化对平台应力以及相对密度的影响进行了预测。然后,通过六边形蜂窝轴向压缩试验和仿真对比,验证了蜂窝建模和仿真方法的正确性;在建模方法和模型验证的基础之上,建立了新型夹心八边形蜂窝的有限元模型,分析了其变形模式以及边长参数对蜂窝吸能能力的影响,验证了理论模型的正确性。此外,进行了夹心八边形蜂窝和六边形、正方形蜂窝吸能能力的对比分析,结果表明新设计的夹心八边形蜂窝具有一定的吸能优势。最后,进行了直升机驾驶舱简化模型和夹心八边形蜂窝的耦合跌落仿真,定性分析了夹心八边形蜂窝的吸能能力。发现该蜂窝相较六边形蜂窝更适用于吸能能力要求高的场合,本文研究结果可以为新型蜂窝缓冲结构的设计提供依据。

本文引用格式

王佳铭 , 李志刚 , 梁方正 , 刘婉婷 , 廖就 , 陈芳育 , 李萌 , 邵特立 . 面向直升机抗坠毁的新型夹心八边形蜂窝设计、仿真和理论研究[J]. 航空学报, 2022 , 43(5) : 225244 -225244 . DOI: 10.7527/S1000-6893.2021.25244

Abstract

A novel cored octagon honeycomb with better energy absorption capacity was proposed in this study. First, a theoretical model was established to rapidly predict the platform stress of the cored octagon honeycomb under axial crush. Based on the theoretical model, the influence of the side length of the cored octagonal honeycomb and the embedded square honeycomb on its platform stress and relative density was predicted. In addition, the three-dimensional finite element models of hexagonal honeycombs were developed and simulated under axial crush. The simulation results are validated against the experimental results. Afterwards, on the basis of the validation via the modeling method, the finite element model of the novel cored octagon honeycomb was established, and then the deformation mode and effect of honeycomb geometric parameters on its energy absorption capacity were analyzed based on simulation. The theoretical model was compared with the simulation, exhibiting high accuracy. Meanwhile, the energy absorption capacity between the cored octagon honeycomb and hexagonal and square honeycombs was compared, revealing the advantages of the designed cored octagon honeycomb over common hexagonal and square honeycombs. Finally, the coupled drop simulation of the simplified helicopter cockpit model and the cored octagon honeycomb was conducted. The results of the qualitative analysis show that the cored octagon honeycomb is more suitable for the occasion with high energy absorption capacity requirements than the hexagonal honeycomb. This study can provide new insights into the design of new honeycomb structures.

参考文献

[1] 荣吉利, 朱宇博, 宋乾强, 等. 异面压缩下六边形铝蜂窝平均塑性坍塌应力研究[J]. 宇航学报, 2018, 39(3):257-263. RONG J L, ZHU Y B, SONG Q Q, et al. Research on the mean plastic crushing stress of hexagonal aluminum honeycombs under out-of-plane compression[J]. Journal of Astronautics, 2018, 39(3):257-263(in Chinese).
[2] 罗昌杰, 周安亮, 刘荣强, 等. 金属蜂窝异面压缩下平均压缩应力的理论模型[J]. 机械工程学报, 2010, 46(18):52-59. LUO C J, ZHOU A L, LIU R Q, et al. Average compressive stress constitutive equation of honeycomb metal under out-of-plane compression[J]. Journal of Mechanical Engineering, 2010, 46(18):52-59(in Chinese).
[3] BAI Z H, GUO H R, JIANG B H, et al. A study on the mean crushing strength of hexagonal multi-cell thin-walled structures[J]. Thin-Walled Structures, 2014, 80:38-45.
[4] QIU N, GAO Y K, FANG J G, et al. Theoretical prediction and optimization of multi-cell hexagonal tubes under axial crashing[J]. Thin-Walled Structures, 2016, 102:111-121.
[5] ZHANG X, ZHANG H. Numerical and theoretical studies on energy absorption of three-panel angle elements[J]. International Journal of Impact Engineering, 2012, 46:23-40.
[6] CHEN W G, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption[J]. Thin-Walled Structures, 2001, 39(4):287-306.
[7] YAMASHITA M, GOTOH M. Impactbehavior of honeycomb structures with various cell specifications-Numerical simulation and experiment[J]. International Journal of Impact Engineering, 2005, 32(1-4):618-630.
[8] 赵辉, 宋扬, 黄江平. 胞元参数对铝蜂窝吸能特性的影响[J]. 机械设计, 2016, 33(9):15-20. ZHAO H, SONG Y, HUANG J P. Influence of cell parameters on aluminum honeycomb's energy absorption characteristics[J]. Journal of Machine Design, 2016, 33(9):15-20(in Chinese).
[9] 孙玉瑾, 骆光林. 六边形蜂窝芯材异面冲击性能的有限元研究[J]. 包装工程, 2012, 33(17):60-62, 73. SUN Y J, LUO G L. Finite element analysis of hexagonal honeycomb's out-of-plane impact performance[J]. Packaging Engineering, 2012, 33(17):60-62, 73(in Chinese).
[10] 蔡茂, 高群, 宗志坚. 铝合金蜂窝结构轴向压缩吸能特性[J]. 材料科学与工程学报, 2015, 33(5):675-679. CAI M, GAO Q, ZONG Z J. Energy absorption properties of honeycomb structured aluminum under axial compression[J]. Journal of Materials Science and Engineering, 2015, 33(5):675-679(in Chinese).
[11] 王中钢, 鲁寨军. 铝蜂窝异面压缩吸能特性实验评估[J]. 中南大学学报(自然科学版), 2013, 44(3):1246-1251. WANG Z G, LU Z J. Experimental assessment on energy absorption property of aluminum honeycomb under out-of-plane compression[J]. Journal of Central South University (Science and Technology), 2013, 44(3):1246-1251(in Chinese).
[12] 徐天娇, 金涛, 周志伟, 等. 铝蜂窝面外压缩行为的尺寸效应研究[J]. 科学技术与工程, 2013, 13(14):3829-3833. XU T J, JIN T, ZHOU Z W, et al. Size effects in the out-of-plane mechanical behavior of hexagonal honeycombs[J]. Science Technology and Engineering, 2013, 13(14):3829-3833(in Chinese).
[13] 贾培奇, 金涛, 树学峰. 高度方向尺寸对铝蜂窝面外力学性能的影响[J]. 科学技术与工程, 2015, 15(15):132-135, 153. JIA P Q, JIN T, SHU X F. Effects of specimen height on the mechanical behavior of honeycomb in out-of-plane[J]. Science Technology and Engineering, 2015, 15(15):132-135, 153(in Chinese).
[14] 欧阳昊, 成伟. 蜂窝铝的侵彻实验研究与有限元模拟[J]. 包装工程, 2015, 36(23):75-77, 93. OUYANG H, CHENG W. Experimental study and finite element simulation on penetration of aluminum honeycomb[J]. Packaging Engineering, 2015, 36(23):75-77, 93(in Chinese).
[15] 王永宁, 李大永. 铝蜂窝异面变形的数值模拟[J]. 中国机械工程, 2006, 17(S1):340-343. WANG Y N, LI D Y. Numerical simulations of aluminum honeycomb out-plane deformation[J]. China Mechanical Engineering, 2006, 17(S1):340-343(in Chinese).
[16] 车全伟, 姚曙光, 肖娴靓. 蜂窝轴向压缩实验与仿真分析方法研究[J]. 铁道科学与工程学报, 2017, 14(5):1049-1055. CHE Q W, YAO S G, XIAO X L. Study on honeycomb axial compression test and simulation analysis method[J]. Journal of Railway Science and Engineering, 2017, 14(5):1049-1055(in Chinese).
[17] 何彬, 李响. 一种新型组合蜂窝的抗冲击性能研究[J]. 机械设计与制造, 2015(6):49-51, 54. HE B, LI X. Research on the impact resistance of a new type of honeycomb structure[J]. Machinery Design & Manufacture, 2015(6):49-51, 54(in Chinese).
[18] 王中钢, 姚松. 加筋正六角铝蜂窝异面力学特性与筋胞厚度匹配优化[J]. 航空材料学报, 2013, 33(3):86-91. WANG Z G, YAO S. Out-of-plane mechanical properties and thickness matching optimization between rib and cell thin-wall of reinforced regular hexagon aluminum honeycomb[J]. Journal of Aeronautical Materials, 2013, 33(3):86-91(in Chinese).
[19] YANG X F, SUN Y X, YANG J L, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure[J]. Thin-Walled Structures, 2018, 125:1-11.
[20] YANG X F, MA J X, SUN Y X, et al. Ripplecomb:A novel triangular tube reinforced corrugated honeycomb for energy absorption[J]. Composite Structures, 2018, 202:988-999.
[21] 李萌, 刘荣强, 罗昌杰, 等. 铝蜂窝串联缓冲结构静态压缩仿真与试验研究[J]. 振动与冲击, 2013, 32(9):50-56. LI M, LIU R Q, LUO C J, et al. Numerical and experimental analyses on series aluminum honeycomb structures under quasi-static load[J]. Journal of Vibration and Shock, 2013, 32(9):50-56(in Chinese).
[22] 谭思博, 侯兵, 李玉龙, 等. 基体材料对铝蜂窝动态强化特性的影响[J]. 爆炸与冲击, 2015, 35(1):16-21. TAN S B, HOU B, LI Y L, et al. Effect of base materials on the dynamic enhancement of aluminium honeycombs[J]. Explosion and Shock Waves, 2015, 35(1):16-21(in Chinese).
[23] 胡玲玲, 蒋玲. 胞孔构型对金属蜂窝动态力学性能的影响机理[J]. 爆炸与冲击, 2014, 34(1):41-46. HU L L, JIANG L. Mechanism of cell configuration affecting dynamic mechanical properties of metal honeycombs[J]. Explosion and Shock Waves, 2014, 34(1):41-46(in Chinese).
文章导航

/