针对共面轨道的单脉冲拦截多目标问题,提出了一种求解拦截二、三目标的数值方法。对于单脉冲拦截二目标问题,当脉冲时刻或拦截某目标时刻给定时,通过Gibbs三矢量定轨算法,将该问题转化为求解只包含2个自由变量的非线性方程问题,通过Newton-Raphson迭代算法实现求解;进一步,考虑脉冲时刻自由,通过数值优化可得到燃料最优解。对于单脉冲拦截三目标问题,基于Lambert解将其转化为求解只包含2个自由变量的非线性方程问题,并通过数值迭代求解。两个问题求解时的迭代初值均通过Pork-Chop图法搜索得到。数值算例验证了提出方法的正确性及有效性。
This paper proposes a numerical method to solve the coplanar two/three-target orbit interception problem with a single impulse.For the two-target interception problem, the impulse time or interception time for the one target is considered to be free.By using the Gibbs method for orbit determination from three position vectors, the problem is transformed into solving the nonlinear equations of only two free variables.Newton-Raphson iterations are adopted to solve the nonlinear equations.The optimal fuel solution is obtained for this problem by numerically optimizing the impulse time.By using the Lambert algorithm, the three-target interception problem is also transformed into solving the nonlinear equations of only two free variables.Numerical iteration is adopted to solve the equations.The initial guesses of both two/three-target interception problem are obtained by the Pork-chop plot method.Numerical examples are provided to verify the correctness and effectiveness of the proposed methods.
[1] 孟雅哲.航天器燃耗最优轨道直接/间接混合法延拓求解[J].航空学报, 2017, 38(1):320168. MENG Y Z.Minimum-fuel spacecraft transfer trajectories solved by direct/indirect hybrid continuation method[J].Acta Aeronauticaet Astronautica Sinica, 2017, 38(1):320168(in Chinese).
[2] 任远, 崔平远, 栾恩杰.最优两脉冲行星际轨道转移优化算法[J].航空学报, 2007, 28(6):1307-1311. REN Y, CUI P Y, LUAN E J.Interplanetaryoptimum two-impulse transfer trajectories[J].Acta Aeronautica et Astronautica Sinica, 2007, 28(6):1307-1311(in Chinese).
[3] 乔栋, 崔祜涛, 崔平远.小行星探测最优两脉冲交会轨道设计与分析[J].宇航学报, 2005, 26(3):362-367. QIAO D, CUI H T, CUI P Y.Design and analyze optimum two-impulse transfer trajectory for exploring asteroids[J].Journal of Astronautics, 2005, 26(3):362-367(in Chinese).
[4] SHEN H X, ZHANG T J, CASALINO L, et al.Optimization of active debris removal missions with multiple targets[J].Journal of Spacecraft and Rockets, 2017, 55(1):181-189.
[5] BATTIN R H.An introduction to the mathematics and methods of astrodynamics, revised edition[M].Reston:AIAA, 1999.
[6] BATE R, MUELLER D, WHITE J.Fundamentals of astrodynamics[M].New York:Dover Publication, 1971:151-176.
[7] ZHANG G, ZHOU D, MORTARI D, et al.Covariance analysis of Lambert's problem via Lagrange's transfer-time formulation[J].Aerospace Science and Technology, 2018, 77:765-773.
[8] ZHANG G.Terminal-velocity-based lambert algorithm[J].Journal of Guidance, Control, and Dynamics, 2020, 43(8):1529-1539.
[9] TRUSSING J E.A class of optimal two-impulse rendezvous using multiple-revolution lambert solutions[J].The Journal of the Astronautical Sciences, 2000, 48(2-3):131-148.
[10] HE Q, LI J, HAN C.Multiple-revolution solutions of the transverse-eccentricity-based lambert problem[J].Journal of Guidance, Control, and Dynamics, 2010, 33(1):265-269.
[11] IZZO D.Revisiting Lambert's problem[J].Celestial Mechanics and Dynamical Astronomy, 2015, 121(1):1-15.
[12] 冯浩阳,岳晓奎,汪雪川.大范围收敛的摄动Lambert问题新型解法:拟线性化-局部变分迭代法[J].航空学报, 2021, 42(11):524699. FENG H Y, YUE X K, WANG X C.A novel quasi linearization-local variational iteration method with large convergence domain for solving perturbed Lambert's problem[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(11):524699(in Chinese).
[13] YANG Z, LUO Y Z, ZHANG J, et al.Homotopic perturbed lambert algorithm for long-duration rendezvous optimization[J].Journal of Guidance, Control, and Dynamics, 2015, 38(11):2215-2223.
[14] ZHANG G, ZHOU D, MORTARI D.Optimal two-impulse rendezvous using constrained multiple-revolution Lambert solutions[J].Celestial Mechanics and Dynamical Astronomy, 2011, 110(4):305-317.
[15] LEEGHIM H.Spacecraft intercept using minimum control energy and wait time[J].Celestial Mechanics and Dynamical Astronomy, 2013, 115(1):1-19.
[16] ZHANG G, WANG D Z, CAO X B, et al.Minimum-time interception with a tangent impulse[J].Journal of Aerospace Engineering, 2015, 28(2):04014062.
[17] OGHIM S, LEEGHIM H, KIM D.Real-time spacecraft intercept strategy on J2-perturbed orbits[J].Advances in Space Research, 2019, 63(2):1007-1016.
[18] 王东哲, 张刚, 曹喜滨.线性相对运动的正切拦截和正切交会轨道研究[J].宇航学报, 2013, 34(11):1434-1441. WANG D Z, ZHANG G, CAO X B.A study on tangentinterception and tangent rendezvous orbits based on linear relative motion[J].Journal of Astronautics, 2013, 34(11):1434-1441(in Chinese).
[19] MCCUE G A, BENDER D F.Numerical investigation of minimum impulse orbital transfer[J].AIAA Journal, 1965, 3(12):2328-2334.
[20] 马艳红, 胡军.基于序优化理论的三脉冲交会燃料寻优[J].宇航学报, 2009, 30(2):663-668. MA Y H, HU J.Three-impulse rendezvous fuel optimization based on ordinal optimization theory[J].Journal of Astronautics, 2009, 30(2):663-668(in Chinese).
[21] PETROPOULOS A, GUSTAFSON E, WHIFFEN G, et al.GTOC X:Settlers of the galaxy problem description and summary of the results[C]//AAS/AIAA Astrodynamics Specialist Conference, 2019.
[22] LUO Y, SHEN H, HUANG A, et al.GTOC X:Results and methods of national university of defense technology and Xi'an satellite control center[C]//AAS/AIAA Astrodynamics Specialist Conference, 2019.
[23] CURTIS H D.Orbital mechanics for engineering students[M].2nd ed.Oxford:Elsevier, 2010:256-263.
[24] DUAN J H, LIU Y F.Two-dimensional launch window method to search for launch opportunities of interplanetary missions[J].Chinese Journal of Aeronautics, 2020, 33(3):965-977.