流体力学与飞行力学

激波/湍流边界层干扰分离泡直接数值模拟

  • 童福林 ,
  • 董思卫 ,
  • 段俊亦 ,
  • 李新亮
展开
  • 1. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000;
    2. 中国科学院 力学研究所 高温气体动力学国家重点实验室, 北京 100190;
    3. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    4. 中国科学院大学 工程科学学院, 北京 100049

收稿日期: 2021-03-02

  修回日期: 2021-04-03

  网络出版日期: 2021-04-27

基金资助

国家自然科学基金(11972356,91852203);国家重点研发计划(2019YFA0405300)

Direct numerical simulation of separation bubble in shock wave/turbulent boundary layer interaction

  • TONG Fulin ,
  • DONG Siwei ,
  • DUAN Junyi ,
  • LI Xinliang
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
    3. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    4. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-03-02

  Revised date: 2021-04-03

  Online published: 2021-04-27

Supported by

National Natural Science Foundation of China (11972356, 91852203); National Key Research and Development Program of China (2019YFA0405300)

摘要

采用直接数值模拟(DNS)方法对来流马赫数为2.25、33.2°激波角的入射激波/平板湍流边界层干扰分离泡进行了数值研究。在验证了计算结果可靠性的基础上,通过分析比较3个不同展向站位分离泡的非定常运动特性、分离微团几何特征和相干结构等,定量考察了三维展向结构差异的影响规律。研究发现,分离泡存在复杂的三维结构,其流向长度明显大于法向高度和展向宽度,整体上沿展向呈现中间高两边低的扁平型单峰结构。分离泡面积脉动预乘功率谱结果表明,分离泡的非定常运动表征为大尺度低频膨胀/收缩过程,其展向三维结构对峰值频率的影响较小,且分离泡两侧略滞后于中间。采用经验模态分解(EMD)方法对分离泡低频膨胀/收缩过程进行了条件统计分析。统计结果表明,膨胀和收缩运动对分离微团几何特征没有实质影响,各展向站位分离微团高度/长度比值的概率峰值出现在0.1附近,同时分离微团面积和法向高度近似满足二次方分布。此外,流向速度脉动场的本征正交分解(POD)分析指出,分离泡的非定常运动与低阶模态密切相关,而高阶模态的贡献相对较小。采用前10个低阶模态可以准确重构出分离泡的低频膨胀/收缩过程。

本文引用格式

童福林 , 董思卫 , 段俊亦 , 李新亮 . 激波/湍流边界层干扰分离泡直接数值模拟[J]. 航空学报, 2022 , 43(7) : 125437 -125437 . DOI: 10.7527/S1000-6893.2021.25437

Abstract

Characteristics of separation bubbles in the interaction of a supersonic turbulent boundary layer at Mach number 2.25 with an impinging shock wave of 33.2° are investigated by means of Direct Numerical Simulation (DNS). After verifying the reliability of the numerical results, fundamental mechanisms associated with separation bubbles, including unsteadiness, separation micro-clusters geometries features and coherent structures, at three different spanwise locations are quantitatively compared to analyze the influence of the three-dimensionality in the spanwise direction. It is found that the separation bubble is highly three-dimensional, with the streamwise extent significantly larger than the wall-normal height and spanwise width. In the spanwise direction, the bubble height is generally large in the middle and small on both sides, exhibiting a single flat peak behavior. The pre-multiplied power spectrum density of the fluctuating separation bubble area suggests that the separation bubble unsteadiness is characterized by large-scale low-frequency contraction and dilation, which is less affected by the spanwise three-dimensionality. The bubbles on both sides lag slightly behind that in the middle. Conditional analysis based on Empirical Mode Decomposition (EMD) is performed to analyze the influence of the bubble dilation and contraction on geometries features of the separation micro-clusters. The statistical results indicate no essential changes in both motions, where the probability peak of the aspect ratio appears around 0.1, and the area and the normal height of the micro-clusters approximately satisfy the quadratic distribution. In addition, the Proper Orthogonal Decomposition (POD) analysis of the fluctuating streamwise velocity indicates that the unsteady motion of the separation bubble is strongly related to the low-order modes, whereas the contribution from the high-order modes is rather small. With the first ten low-order modes, the low-frequency dilation and contraction process of separation bubbles is accurately reconstructed.

参考文献

[1] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research:what next?[J]. AIAA Journal, 2001, 39(8):1517-1531.
[2] GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72:80-99.
[3] ROSHKO A, THOMKE G J. Flare-induced interaction lengths in supersonic, turbulent boundary layers[J]. AIAA Journal, 1976, 14(7):873-879.
[4] SETTLES G S, BOGDONOFF S M, VAS I E. Incipient separation of a supersonic turbulent boundary layer at high Reynolds numbers[J]. AIAA Journal, 1976, 14(1):50-56.
[5] ZHELTOVODOV A A, SHILEIN é K, HORSTMAN C C. Development of separation in the region where a shock interacts with a turbulent boundary layer perturbed by rarefaction waves[J]. Journal of Applied Mechanics and Technical Physics, 1993, 34(3):346-354.
[6] JAUNET V, DEBIèVE J F, DUPONT P. Length scales and time scales of a heated shock-wave/boundary-layer interaction[J]. AIAA Journal, 2014, 52(11):2524-2532.
[7] ZHU X K, YU C P, TONG F L, et al. Numerical study on wall temperature effects on shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 2017, 55(1):131-140.
[8] TONG F L, LI X L, YUAN X X, et al. Incident shock wave and supersonic turbulent boundarylayer interactions near an expansion corner[J]. Computers&Fluids, 2020, 198:104385.
[9] 童福林,孙东,袁先旭,等.超声速膨胀角入射激波/湍流边界层干扰直接数值模拟[J].航空学报, 2020, 41(3):123328. TONG F L, SUN D, YUAN X X, et al. Direct numerical simulation of impinging shock wave/turbulent boundary layer interactions in a supersonic expansion corner[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):123328(in Chinese).
[10] 童福林,周桂宇,孙东,等.膨胀效应对激波/湍流边界层干扰的影响[J].航空学报, 2020, 41(9):123731. TONG F L, ZHOU G Y, SUN D, et al. Expansion effect on shock wave and turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):123731(in Chinese).
[11] GRILLI M, SCHMID P J, HICKEL S, et al. Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 700:16-28.
[12] PRIEBE S, MARTÍN M P. Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699:1-49.
[13] LOGINOV M S, ADAMS N A, ZHELTOVODOV A A. Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction[J]. Journal of Fluid Mechanics, 2006, 565:135-169.
[14] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18(6):065113.
[15] BOOKEY P B, WYCKHAM C, SMITS A J. Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions:AIAA-2005-4899[R]. Reston:AIAA, 2005.
[16] DUPONT P, HADDAD C, DEBIèVE J F. Space and time organization in a shock-induced separated boundary layer[J]. Journal of Fluid Mechanics, 2006, 559:255-277.
[17] FANG J, ZHELTOVODOV A A, YAO Y F, et al. On the turbulence amplification in shock-wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2020, 897:A32.
[18] TONG F L, LI X L, DUAN Y H, et al. Direct numerical simulation of supersonic turbulent boundary layer subjected to a curved compression ramp[J]. Physics of Fluids, 2017, 29(12):125101.
[19] TONG F L, YU C P, TANG Z G, et al. Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner:turning angle effects[J]. Computers&Fluids, 2017, 149:56-69.
[20] 童福林,周桂宇,周浩,等.激波/湍流边界层干扰物面剪切应力统计特性[J].航空学报, 2019, 40(5):122504. TONG F L, ZHOU G Y, ZHOU H, et al. Statistical characteristics of wall shear stress in shock wave and turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122504(in Chinese).
[21] TONG F L, CHEN J Q, SUN D, et al. Wall-shear stress fluctuations in a supersonic turbulent boundary layer over an expansion corner[J]. Journal of Turbulence, 2020, 21(7):355-374.
[22] WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4):879-889.
[23] PIROZZOLI S, BERNARDINI M, GRASSO F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 613:205-231.
[24] CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46:469-492.
[25] WAINDIM M, AGOSTINI L, LARCHVEQUE L, et al. Dynamics of separation bubble dilation and collapse in shock wave/turbulent boundary layer interactions[J]. Shock Waves, 2020, 30(1):63-75.
[26] FLANDRIN P, RILLING G, GONCALVES P. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters, 2004, 11(2):112-114.
[27] TAIRA K, BRUNTON S L, DAWSON S T M, et al. Modal analysis of fluid flows:an overview[J]. AIAA Journal, 2017, 55(12):4013-4041.
[28] MUSTAFA M A, PARZIALE N J, SMITH M S, et al. Amplification and structure of streamwise-velocity fluctuations in compression-corner shock-wave/turbulent boundary-layer interactions[J]. Journal of Fluid Mechanics, 2019, 863:1091-1122.
[29] PASQUARIELLO V, HICKEL S, ADAMS N A. Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number[J]. Journal of Fluid Mechanics, 2017, 823:617-657.
[30] BERESH S J, CLEMENS N T, DOLLING D S. Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness[J]. AIAA Journal, 2002, 40(12):2412-2422.
[31] ERENGIL M E, DOLLING D S. Correlation of separation shock motion with pressure fluctuations inthe incoming boundary layer[J]. AIAA Journal, 1991, 29(11):1868-1877.
[32] GANAPATHISUBRAMANI B, CLEMENS N T, DOLLING D S. Low-frequency dynamics of shock-induced separation in a compression ramp interaction[J]. Journal of Fluid Mechanics, 2009, 636:397-425.
[33] HUMBLE R A, SCARANO F, VAN OUDHEUSDEN B W. Unsteady aspects of an incident shock wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2009, 635:47-74.
[34] PIPONNIAU S, DUSSAUGE J P, DEBIōVE J F, et al. A simple model for low-frequency unsteadiness in shock-induced separation[J]. Journal of Fluid Mechanics, 2009, 629:87-108.
文章导航

/