材料工程与机械制造

基于BPNN的封严涂层孔隙分布均匀性超声表征

  • 董珍一 ,
  • 林莉 ,
  • 雷明凯 ,
  • 马志远
展开
  • 1. 大连理工大学 无损检测研究所, 大连 116024;
    2. 大连理工大学 材料科学与工程学院, 大连 116024

收稿日期: 2021-01-20

  修回日期: 2021-02-06

  网络出版日期: 2021-04-27

基金资助

国家自然科学基金(52075078,51805072,51675083);"兴辽英才计划"项目(XLYC1902082)

Ultrasonic quantitative characterization of pore distribution uniformity of seal coating based on BPNN

  • DONG Zhenyi ,
  • LIN Li ,
  • LEI Mingkai ,
  • MA Zhiyuan
Expand
  • 1. Nondestructive Testing & Evaluation Laboratory, Dalian University of Technology, Dalian 116024, China;
    2. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China

Received date: 2021-01-20

  Revised date: 2021-02-06

  Online published: 2021-04-27

Supported by

National Natural Science Foundation of China (52075078, 51805072, 51675083); Program for Excellent Talents in Liaoning (XLYC1902082)

摘要

可磨耗封严涂层的多相非均质特性导致超声波在其中传播行为复杂,涂层组成相分布均匀性的超声表征在有效超声特征提取、特征与均匀性关系描述等方面存在困难。针对这一现状,提出了BP神经网络(BPNN)结合超声信号小波变换技术定量表征可磨耗封严涂层孔隙分布均匀性的方法。基于统计学思想与随机场理论建立铝硅聚苯酯(AlSi-PHB)封严涂层随机多相介质模型,通过调节自相关长度参数改变模型的孔隙分布状态。采用面积分数多尺度分析技术获得定量描述涂层孔隙分布均匀性的绝对斜率与均匀性长度,提取超声仿真信号的时域、频域及小波分解时频域衰减系数,探究其与绝对斜率及均匀性长度之间的相关性,并作为BPNN的输入对绝对斜率与均匀性长度进行预测。结果显示:在孔隙率5%时,随自相关长度从11 μm增大至26 μm,绝对斜率从0.86减小至0.76,均匀性长度从550 μm增大至6 785 μm,表明孔隙分布均匀性降低;时频域衰减系数与均匀性参数间的相关性最显著,绝对斜率与均匀性长度的BPNN预测结果决定系数分别为0.97和0.98,在3种衰减系数预测结果中最优。所提方法可为定量表征非均质涂层组织分布均匀性提供有效途径。

本文引用格式

董珍一 , 林莉 , 雷明凯 , 马志远 . 基于BPNN的封严涂层孔隙分布均匀性超声表征[J]. 航空学报, 2022 , 43(5) : 425294 -425294 . DOI: 10.7527/S1000-6893.2021.25294

Abstract

The propagation behavior of ultrasonic wave is complex in multi-phase heterogeneous abradable seal coating, so it is difficult to extract effective ultrasonic characteristics and describe the relationship between the characteristics and microstructure distribution uniformity. The BP Neural Network (BPNN) combined with wavelet transform is proposed to quantitatively characterize pore distribution uniformity of abradable seal coating through the ultrasonic testing technique. Based on the statistical method and the random medium theory, random multiphase medium models for AlSi-Polyester (AlSi-PHB) seal coating were established, whose pore distributions were adjusted by varying autocorrelation lengths. Two uniformity parameters, absolute slope, and uniformity length were extracted to quantitatively describe pore distribution uniformity using the multi-scale analysis of area fraction. The time domain, frequency domain, and time-frequency domain attenuation coefficients were extracted from simulated ultrasonic signals. Correlations between absolute slope, uniformity length and the attenuation coefficients were explored. The BPNN with attenuation coefficients as the inputs was applied for training and prediction of absolute slope and uniformity length. The results show that when porosity was 5%, as autocorrelation lengths increased from 11 μm to 26 μm, absolute slope decreased from 0.86 to 0.76 and uniformity length increased from 550 μm to 6 785 μm, which indicates that the pore distribution uniformity gets worse. The time-frequency domain attenuation coefficients and the uniformity parameters were the most correlative, and the determination coefficients of the predicted absolute slope and uniformity length through BPNN were 0.97 and 0.98, respectively, which are the most accurate among the prediction results of three kinds of attenuation coefficients. The proposed method provides an effective way for quantitative characterization of distribution uniformity of multi-phase heterogeneous coatings.

参考文献

[1] HARDWICKE C U, LAU Y C. Advances in thermal spray coatings for gas turbines and energy generation:A review[J]. Journal of Thermal Spray Technology, 2013, 22(5):564-576.
[2] 唐健江, 于方丽, 张海鸿, 等. 润滑相尺寸对镍-石墨可磨耗封严涂层性能的影响[J]. 航空材料学报, 2019, 39(2):42-48. TANG J J, YU F L, ZHANG H H, et al. Effect of size of lubrication phase on properties of Ni-graphite abradable seal coating[J]. Journal of Aeronautical Materials, 2019, 39(2):42-48(in Chinese).
[3] 张佳平, 高禩洋, 李浩宇, 等. 高速刮擦条件下两种铝基封严涂层的可刮削性[J]. 中国表面工程, 2018, 31(6):90-97. ZHANG J P, GAO S Y, LI H Y, et al. Investigation on abradability of two aluminum-based seal coatings under high-speed rubbing condition[J]. China Surface Engineering, 2018, 31(6):90-97(in Chinese).
[4] MA Z Y, ZHANG W, LUO Z B, et al. Ultrasonic characterization of thermal barrier coatings porosity through BP neural network optimizing Gaussian process regression algorithm[J]. Ultrasonics, 2020, 100:105981.
[5] DING S S, JIN S J, LUO Z B, et al. Researches on the ultrasonic scattering attenuation of carbon fibre reinforced plastics with 2D real morphology void model[J]. Acoustical Physics, 2017, 63(4):490-495.
[6] 董金龙, 陈昊, 陈曦, 等. 面向映射单调性的TC4初生α相晶粒尺寸超声评价方法[J]. 航空学报, 2018, 39(12):422360. DONG J L, CHEN H, CHEN X, et al. An ultrasonic method of evaluation of TC4 primary α-phase grain size towards mapping monotonicity[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):422360(in Chinese).
[7] 孙广开, 周正干. SiCp/Al复合材料增强体分布均匀性超声成像方法[J]. 北京航空航天大学学报, 2017, 43(3):417-423. SUN G K, ZHOU Z G. Ultrasonic imaging method fordistribution uniformity of reinforcement in SiCp/Al composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3):417-423(in Chinese).
[8] ZHU L B, XIANG X C, DU Y, et al. Uniformity assessment of TRISO fuel particle distribution in spherical HTGR fuel element using voronoi tessellation and delaunay triangulation[J]. Science and Technology of Nuclear Installations, 2018, 2018:7274261.
[9] SPOWART J E. Microstructural characterization and modeling of discontinuously-reinforced aluminum composites[J]. Materials Science and Engineering:A, 2006, 425(1-2):225-237.
[10] WILKS G B, TSCHOPP M A, SPOWART J E. Multi-scale characterization of inhomogeneous morphologically textured microstructures[J]. Materials Science and Engineering:A, 2010, 527(4-5):883-889.
[11] 李宗艺, 张伟, 林莉, 等. 基于面积分数多尺度分析的封严涂层孔隙分布均匀性定量表征[J]. 中国表面工程, 2020, 33(4):145-151. LI Z Y, ZHANG W, LIN L, et al. Quantitative characterization of pore distribution uniformity of seal coatings based on multi-scale analysis of area fraction[J]. China Surface Engineering, 2020, 33(4):145-151(in Chinese).
[12] CAGGIANO A, ZHANG J J, ALFIERI V, et al. Machine learning-based image processing for on-line defect recognition in additive manufacturing[J]. CIRP Annals, 2019, 68(1):451-454.
[13] 李萍, 宋波, 毛捷, 等. 深度学习在超声检测缺陷识别中的应用与发展[J]. 应用声学, 2019, 38(3):458-464. LI P, SONG B, MAO J, et al. Application and development of defect recognition using deep learning in ultrasonic testing[J]. Journal of Applied Acoustics, 2019, 38(3):458-464(in Chinese).
[14] ZHANG M X, LI M C, ZHANG J R, et al. Onset detection of ultrasonic signals for the testing of concrete foundation piles by coupled continuous wavelet transform and machine learning algorithms[J]. Advanced Engineering Informatics, 2020, 43:101034.
[15] 叶博嘉, 鲍序, 刘博, 等. 基于机器学习的航空器进近飞行时间预测[J]. 航空学报, 2020, 41(10):324136. YE B J, BAO X, LIU B, et al. Machine learning for aircraft approach time prediction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10):324136(in Chinese).
[16] 刘源, 庞宝君, 迟润强, 等. 基于声发射的铝蜂窝板超高速撞击损伤模式识别方法[J]. 航空学报, 2017, 38(5):220401. LIU Y, PANG B J, CHI R Q, et al. A damage pattern recognition method for hypervelocity impact on aluminum honeycomb core sandwich based on acoustic emission[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5):220401(in Chinese).
[17] 骆志高, 张保刚, 何鑫. 基于BP神经网络的金属拉深件裂纹在线监测[J]. 振动与冲击, 2012, 31(10):102-105. LUO Z G, ZHANG B G, HE X. On-line crack monitoring of metal deep drawing parts based on BP neural network[J]. Journal of Vibration and Shock, 2012, 31(10):102-105(in Chinese).
[18] ZHANG R, WANG K, JIA R X, et al. Research on ultrasonic thermometry using maximum eigenvalue algorithm based on BP neural network[C]//2017 Chinese Automation Congress (CAC). Piscataway:IEEE Press, 2017:485-491.
[19] LI K S, MA Z Y, FU P, et al. Quantitative evaluation of surface crack depth with a scanning laser source based on particle swarm optimization-neural network[J]. NDT & E International, 2018, 98:208-214.
[20] ACCIANI G, BRUNETTI G, FORNARELLI G, et al. Angular and axial evaluation of superficial defects on non-accessible pipes by wavelet transform and neural network-based classification[J]. Ultrasonics, 2010, 50(1):13-25.
[21] LIN L, ZHANG W, MA Z Y, et al. Porosity estimation of abradable seal coating with an optimized support vector regression model based on multi-scale ultrasonic attenuation coefficient[J]. NDT & E International, 2020, 113:102272.
[22] 赵扬, 林莉, 马志远, 等. 基于随机介质理论的热障涂层随机孔隙模型构建[J]. 中国表面工程, 2010, 23(2):78-81. ZHAO Y, LIN L, MA Z Y, et al. Establishing TBC random pore model based on random media theory[J].China Surface Engineering, 2010, 23(2):78-81(in Chinese).
[23] LI L, WEI Z, ZHIYUAN M, et al. Random multi-phase medium model and its application in analysis of ultrasonic propagation characteristics for AlSi-polyester abradable seal coating[J]. NDT & E International, 2019, 108:102173.
[24] 饶颖, 符力耘, 吴玉, 等. 基于微结构-尺度双分解的页岩随机介质模拟和非均质特征分析[J]. 地球物理学报, 2020, 63(7):2800-2809. RAO Y, FU L Y, WU Y, et al. Heterogeneous characteristic analysis of shale based on multi-component and multi-scale random media method[J]. Chinese Journal of Geophysics, 2020, 63(7):2800-2809(in Chinese).
文章导航

/