综述

混合相/冰晶条件下的结冰研究综述

  • 黄平 ,
  • 卜雪琴 ,
  • 刘一鸣 ,
  • 林贵平 ,
  • 杨坤
展开
  • 1. 北京航空航天大学 航空科学与工程学院, 北京 100083;
    2. 中国航发商用航空发动机有限责任公司, 上海 200241

收稿日期: 2020-12-29

  修回日期: 2021-01-25

  网络出版日期: 2021-04-27

基金资助

国家科技重大专项(2017-VIII-0003-0114);中央高校基本科研业务费专项资金(YWF-20-BJ-J-732)

Mixed phase/glaciated ice accretion: Review

  • HUANG Ping ,
  • BU Xueqin ,
  • LIU Yiming ,
  • LIN Guiping ,
  • YANG Kun
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. AECC Commercial Aircraft Engine Co., LTD, Shanghai 200241, China

Received date: 2020-12-29

  Revised date: 2021-01-25

  Online published: 2021-04-27

Supported by

National Science and Technology Major Project of China (2017-VIII-0003-0114); Fundamental Research Funds for the Central Universities (YWF-20-BJ-J-732)

摘要

针对混合相/冰晶结冰问题,阐述了与过冷水结冰的差异及其危害。从混合相/冰晶结冰地面模拟试验设备、试验现象以及数值模拟3个方面详细论述了混合相/冰晶结冰的研究进展。其中,地面模拟试验设备以Cox冰风洞、NRC高空试验设备、NASA推进系统试验室、德国布伦瑞克冰风洞为例,总结了各自的冰晶生成方法和试验能力;分别介绍了以上4个地面模拟设备中开展的混合相/冰晶试验,分析了其试验现象的异同和产生的原因;针对混合相/冰晶结冰数值模拟中面临的4个关键问题:冰晶运动融化相变、冰晶黏附、侵蚀、结冰过程模拟,总结了现有模型和模拟方法,提出了不足之处。最后,对混合相/冰晶结冰有待进一步重点关注的研究方向进行了展望。

关键词: 混合相; 冰晶; 黏附; 侵蚀; 结冰

本文引用格式

黄平 , 卜雪琴 , 刘一鸣 , 林贵平 , 杨坤 . 混合相/冰晶条件下的结冰研究综述[J]. 航空学报, 2022 , 43(5) : 25178 -025178 . DOI: 10.7527/S1000-6893.2021.25178

Abstract

The difference between the icing problem of mixed phase/ice crystals and the supercooled water icing is presented, and the harm of the former pointed out. The research progress of mixed phase/ice crystal icing is discussed from three aspects:ice crystal icing ground simulation test equipment, experimental phenomena, and numerical simulation. The ice crystal generation methods and test capabilities of ground simulation test equipment, with the Cox ice wind tunnel, NRC high altitude test equipment, NASA's propulsion system laboratory, and Germany's Braunschweig icing wind tunnel as examples, are summarized, the mixed phase or glaciated icing experiments conducted in the above four ground simulation equipment are introduced, and the similarities and differences of the experimental phenomena and their causes are analyzed. Four key problems including the ice crystal melting phase transition during movement, the ice crystal adhesion, erosion, and the icing process simulation are then discussed in the numerical simulation of mixed phase and glaciated icing. Furthermore, the existing models and simulation methods are summarized, and the shortcomings proposed. Finally, the research directions of mixed phase/glaciated icing requiring further attention are prospected.

参考文献

[1] LEARY W M. We freeze to please:A history of NASA's icing research tunnel and the quest for safety:NASA-SP-2002-4226[R]. Washington,D.C.:NASA, 2002.
[2] National Transportation Safety Board (NTSB). In-flight icing encounter and loss of control Simmons Airlines, d.b.a. doing business as American Eagle flight 4184 Avions de Transport Regional (ATR) model 72-212, N401AM, Roselawn, Indiana, October 31, 1994:NTSB/AAR.96/01[R]. Washington, D.C.:NASA, 1996.
[3] COBER S, ISAAC G, KOROLEV A, et al. Measurements of aircraft icing environments which include supercooled large drops[C]//37th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1999.
[4] COBER S, ISAAC G. Aircraft icing environments observed in mixed-phase clouds[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston:AIAA, 2002.
[5] ISAAC G, COBER S, KOROLEV A, et al. Canadian freezing drizzle experiment[C]//37th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1999.
[6] ISAAC G, COBER S, STRAPP J, et al. Preliminary results from the alliance icing research study (AIRS)[C]//39th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2001.
[7] COBER S, RATVASKY T, ISAAC G. Assessment of aircraft icing conditions observed during AIRS[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston:AIAA, 2002.
[8] MILLER D, BERNSTEIN B, MCDONOUGH B, et al. NASA/FAA/NCAR supercooled large droplet icing flight research-Summary of winter 96-97 flight operations[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1998.
[9] HUNT W. Ice crystals connected with engine power-loss and damage[R]. Seattle:Boeing Training and Flight Services Technical Bulletin, 2008.
[10] MASON J, STRAPP W, CHOW P. The ice particle threat to engines in flight[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006.
[11] ADDY H E Jr, VERES J P. An overview of NASA engine ice-crystal icing research[C]//SAE International, 2011.
[12] DEZITTER F, GRANDIN A, BRENGUIER J L, et al. HAIC-high altitude ice crystals[C]//5th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2013.
[13] 袁庆浩, 樊江, 白广忱. 航空发动机内部冰晶结冰研究综述[J]. 推进技术, 2018, 39(12):2641-2650. YUAN Q H, FAN J, BAI G C. Review of ice crystal icing in aero-engines[J]. Journal of Propulsion Technology, 2018, 39(12):2641-2650(in Chinese).
[14] 沈浩, 韩冰冰, 张丽芬. 航空发动机中冰晶结冰的研究进展[J]. 实验流体力学, 2020, 34(6):1-7. SHEN H, HAN B B, ZHANG L F. Research progress of the ice crystal icing in aero-engine[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6):1-7(in Chinese).
[15] 姜飞飞, 董威, 郑梅, 等. 冰晶在涡扇发动机内相变换热特性[J]. 航空动力学报, 2019, 34(3):567-575. JIANG FF, DONG W, ZHENG M, et al. Phase change heat transfer characteristic of ice crystal ingested into turbofan engine[J]. Journal of Aerospace Power, 2019, 34(3):567-575(in Chinese).
[16] 卜雪琴, 李皓, 黄平, 等. 二维机翼混合相结冰数值模拟[J]. 航空学报, 2020, 41(12):124085. BU X Q, LI H, HUANG P,et al. Numerical simulation of mixed phase icing on two-dimensional airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):124085(in Chinese).
[17] ZHANG L F, LIU Z X, ZHANG M H. Numerical simulation of ice accretion under mixed-phase conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2016, 230(13):2473-2483.
[18] BRAVIN M, STRAPP J W, MASON J. An investigation into location and convective lifecycle trends in an ice crystal icing engine event database[C]//SAE International, 2015.
[19] Langley Flying School. Meteorology (Part II)[EB/OL]. (2020)[2020-12-03].http://www.langleyflyingschool.Com/Pages/CPGS%20Meteor-ology,%20Part%202.html#Icing.
[20] AL-KHALIL K M, KEITH T G, DE WITT K J. Icing calculations on a typical commercial jet engine inlet nacelle[J]. Journal of Aircraft, 1997, 34(1):87-93.
[21] 邢玉明, 盛强, 常士楠. 大型开式冰风洞的模拟技术研究[C]//大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集, 2007. XING Y M, SHENG Q, CHANG S N. Research on simulation technology of large open ice wind tunnel[C]//High Level Forum on Key Technologies of Large Aircraft and Annual Meeting of CAAC, 2007(in Chinese).
[22] AL-KHALIL K, IRANI E, MILLER D. Mixed phase icing simulation and testing at the cox icing wind tunnel[C]//41 st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003.
[23] MACLEOD J D. Development of ice crystal facilities for engine testing[C]//SAE International, 2007.
[24] MACLEOD J, FULEKI D. Ice crystal accretion test rig development for a compressor transition duct[C]//AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2010.
[25] CURRIE T, STRUK P, TSAO J C, et al. Fundamental study of mixed-phase icing with application to ice crystal accretion in aircraft jet engines[C]//4th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2012.
[26] CURRIE T C, FULEKI D, MAHALLATI A. Experimental studies of mixed-phase sticking efficiency for ice crystal accretion in jet engines[C]//6th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2014.
[27] STRUK P, BARTKUS T, TSAO J C, et al. Ice accretion measurements on an airfoil and wedge in mixed-phase conditions[C]//SAE International, 2015.
[28] CURRIE T C, FULEKI D. Experimental results for ice crystal icing on hemispherical and double wedge geometries at varying Mach numbers and wet bulb temperatures[C]//8th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2016.
[29] STRUK P M, KING M C, BARTKUS T P, et al. Ice crystal icing physics study using a NACA 0012 airfoil at the national research council of Canada's research altitude test facility[C]//2018 Atmospheric and Space Environments Conference. Reston:AIAA, 2018.
[30] IDE R. Liquid water content and droplet size calibration of the NASA Lewis Icing Research Tunnel[C]//28th Aerospace Sciences Meeting. Reston:AIAA, 1990.
[31] VAN ZANTE J F, RATVASKY T P, BENCIC T J, et al. Update on the NASA Glenn propulsion systems lab icing and ice crystal cloud characterization-2017[C]//2018 Atmospheric and Space Environments Conference. Reston:AIAA, 2018.
[32] FLEGEL A B, OLIVER M J. Preliminary results from a heavily instrumented engine ice crystal icing test in a ground based altitude test facility[C]//8th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2016.
[33] AGUI J H, STRUK P M, BARTKUS T P. Total temperature measurements using a rearward facing probe in supercool liquid droplet and ice crystal clouds[C]//2018 Atmospheric and Space Environments Conference. Reston:AIAA, 2018.
[34] KING M C, MANIN J, VAN ZANTE J F, et al. Particle size calibration testing in the NASA propulsion system laboratory[C]//2018 Atmospheric and Space Environments Conference. Reston:AIAA, 2018.
[35] STRUK P M, JUAN A G, RATVASKY T, et al. Ice-crystal icing accretion studies at the NASA propulsion systems laboratory[C]//SAE International, 2019.
[36] BARTKUS T P, TSAO J C, STRUK P M. Analysis of experimental ice accretion data and assessment of a thermodynamic model during ice crystal icing[C]//SAE International, 2019.
[37] BAUMERT A, BANSMER S E, BACHER M. Implementation of an innovative ice crystal generation system to the Icing Wind Tunnel Braunschweig[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015.
[38] BAUMERT A, BANSMER S, SATTLER S, et al. Simulating natural ice crystal cloud conditions for icing wind tunnel experiments-A review on the design, commissioning and calibration of the TU Braunschweig ice crystal generation system[C]//8th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2016.
[39] BAUMERT A, BANSMER S, TRONTIN P, et al. Experimental and numerical investigations on aircraft icing at mixed phase conditions[J]. International Journal of Heat and Mass Transfer, 2018, 123:957-978.
[40] WRIGHT W, JORGENSON P, VERES J. Mixed phase modeling in GlennICE with application to engine icing[C]//AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2010.
[41] NILAMDEEN S, HABASHI W G. Multiphase approach toward simulating ice crystal ingestion in jet engines[J]. Journal of Propulsion and Power, 2011, 27(5):959-969.
[42] VILLEDIEU P, TRONTIN P, CHAUVIN R. Glaciated and mixed phase ice accretion modeling using ONERA 2D icing suite[C]//6th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2014.
[43] TRONTIN P, BLANCHARD G, VILLEDIEU P. A comprehensive numerical model for mixed-phase and glaciated icing conditions[C]//8th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2016.
[44] MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1):29-42.
[45] BENNANI L, VILLEDIEU P, SALAUN M, et al. Numerical simulation and modeling of ice shedding:Process initiation[J]. Computers & Structures, 2014, 142:15-27.
[46] KINTEA D M, ROISMAN I V, TROPEA C. Transport processes in a wet granular ice layer:Model for ice accretion and shedding[J]. International Journal of Heat and Mass Transfer, 2016, 97:461-472.
[47] 刘增承. 关于发动机内部结冰的探讨[C]//北京:全国飞行技术和飞行安全研讨会, 2000. LIU Z C. Discussion on icing inside engine[C]//Beijing:National Symposium on Flight Technology and Flight Safety, 2000(in Chinese).
[48] NORDE E. Eulerian method for ice crystal icing in turbofan engines[D]. Enschede:University of Twente, 2017.
[49] HAUK T. Investigation of the impact and melting process of ice particles[D]. München:Technische Universität Darmstadt, 2016.
[50] GANSER G H. A rational approach to drag prediction of spherical and nonspherical particles[J]. Powder Technology, 1993, 77(2):143-152.
[51] AYAN E, OZGEN S, MURAT C, et al. Prediction of ice crystal accretion with TAICE[C]//SAE International, 2015.
[52] GRIFT E J, NORDE E, VAN DER WEIDE E T A, et al. Computational method for ice crystal trajectories in a turbofan compressor[C]//SAE International, 2015.
[53] AOUIZERATE G, CHARTON V, BALLAND M, et al. Ice crystals trajectory calculations in a turbofan engine[C]//2018 Atmospheric and Space Environments Conference. Reston:AIAA, 2018.
[54] IULIANO E, MONTREUIL E, NORDE E, et al. Modelling of non-spherical particle evolution for ice crystals simulation with an eulerian approach[C]//SAE International, 2015.
[55] TRONTIN P, VILLEDIEU P. A comprehensive accretion model for glaciated icing conditions[J]. International Journal of Multiphase Flow, 2018, 108:105-123.
[56] NORDE E, VAN DER WEIDE E T A, HOEIJMAKERS H W M. Eulerian method for ice crystal icing[J]. AIAA Journal, 2018, 56(1):222-234.
文章导航

/