固体力学与飞行器总体设计

基于双峰对数正态分布模型的DED-TA15钛合金DFR值估计方法

  • 王天帅 ,
  • 贺小帆 ,
  • 王金宇 ,
  • 李玉海
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100083

收稿日期: 2020-11-25

  修回日期: 2021-03-18

  网络出版日期: 2021-04-27

基金资助

国家重点研发计划(2017YFB1104003);国家自然科学基金(11772027);航空科学基金(201909051002)

Estimation method for DFR value of DED-TA15 titanium alloy based on bimodal lognormal distribution

  • WANG Tianshuai ,
  • HE Xiaofan ,
  • WANG Jinyu ,
  • LI Yuhai
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China

Received date: 2020-11-25

  Revised date: 2021-03-18

  Online published: 2021-04-27

Supported by

National Key Research and Development Program of China (2017YFB1104003); National Natural Science Foundation of China (11772027); Aeronautical Science Foundation of China (201909051002)

摘要

有效评价增材制造金属材料的疲劳强度,是增材制造技术应用于可重复使用飞行器主承力结构的关键。以DED-TA15钛合金为研究对象,基于3种应力水平下标准圆棒试件的成组疲劳试验结果,建立了描述DED-TA15钛合金疲劳寿命分布的双峰对数正态分布模型,采用EM算法,建立了双峰对数正态分布的参数估计方法;采用Bootstrap方法给出了指定置信度和可靠度要求的疲劳寿命计算方法。在军机DFR方法的基础上,给出了适用于DED-TA15钛合金的DFR值计算方法。与传统单峰对数正态分布相比,双峰对数正态分布更精确的描述了疲劳寿命分布,提高了高可靠度和高置信度要求下的疲劳寿命,DFR值也有所提高。该方法降低了因描述模型不精确导致的对设计许用应力的过度限制,有效的提高DED-TA15钛合金的使用潜力。

本文引用格式

王天帅 , 贺小帆 , 王金宇 , 李玉海 . 基于双峰对数正态分布模型的DED-TA15钛合金DFR值估计方法[J]. 航空学报, 2022 , 43(3) : 225013 -225013 . DOI: 10.7527/S1000-6893.2021.25013

Abstract

Fatigue strength evaluation of Additive Manufacturing (AM) metal materials is a prerequisite for the application of AM materials to the main bearing structure of aircraft.Taking DED-TA15 titanium alloy as the research object, we conduct a fatigue test of standard cylindrical specimens at three stress levels and obtain the fatigue life data.A bimodal lognormal distribution model is built to describe the fatigue life distribution of DED-TA15 titanium alloy based on the test results.The EM algorithm is used to establish the parameter estimation method of the bimodal lognormal distribution, and the Bootstrap method is adopted to calculate the fatigue life with the specified confidence level and reliability requirements.Compared with the traditional lognormal distribution model, the bimodal lognormal distribution can describe the fatigue life of DED-TA15 titanium alloy more accurately.The fatigue life at the high reliability and high confidence level, as well as the Detail Fatigue Rating (DFR) value, is improved.This method reduces the excessive limitation of allowable design stress and effectively increases the load potential of DED-TA15 titanium alloy.

参考文献

[1] 王向明, 刘文珽.飞机钛合金结构设计与应用[M].北京:国防工业出版社, 2010:1-3. WANG X M, LIU W T.Design and application of aircraft titanium alloy structure[M].Beijing:National Defense Industry Press, 2010:1-3(in Chinese).
[2] ASTM International.Standard terminology for additive manufacturing technologies, F2792-12a[S].2012.
[3] ZHU Y Y, LIU D, TIAN X J, et al.Characterization of microstructure and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J].Materials & Design, 2014, 56(7):445-453.
[4] LIU Z, QIN Z-X, LIU F, et al.The microstructure and mechanical behaviors of the Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser melting deposition[J].Materials Characterization, 2014, 97:132-139.
[5] LIU C M, TIAN X J, WANG H M, et al.Obtaining bimodal microstructure in laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J].Materials Science and Engineering:A,2014, 609:177-184.
[6] LIU C M, WANG H M, TIAN X J, et al.Microstructure and tensile properties of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J].Materials Science and Engineering:A, 2013, 586:323-329.
[7] CARROLL B E, PALMER T A, BEESE A M.Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J].Acta Materialia,2015, 87:309-320.
[8] QIU C, RAVI G A, DANCE C, et al.Fabrication of large Ti-6Al-4V structures by direct laser deposition[J].Journal of Alloys and Compounds,2015, 629:351-361.
[9] BRANDL E, PALM F, MICHAILOVICHAILOV V, et al.Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire[J].Materials & Design, 2011, 32(10):4665-4675.
[10] BRANDL E, LEYENS C, PALM F.Mechanical properties of additive manufactured Ti-6Al-4V using wire and powder based processes[C]//IOP Conference Series:Materials Science and Engineering, 2011, 26:012004.
[11] PEGUES J W, SHAO S, SHAMSAEI N, et al.Fatigue of additive manufactured Ti-6Al-4V, Part I:The effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects[J].International Journal of Fatigue,2019, 132:105358.
[12] SCHIJVE J.Fatigue of structures and materials in the 20th century and the state of the art[J].International Journal of Fatigue,2003, 25(8):679-702.
[13] SANDGREN H R, ZHAI Y, LADOS D A, et al.Characterization of fatigue crack growth behavior in LENS fabricated Ti-6Al-4V using high-energy synchrotron x-ray microtomography[J].Additive Manufacturing, 2016, 12:132-141.
[14] HE R J, WANG H M.Fatigue crack nucleation and growth behaviors of laser melting deposited Ti-6Al-2Zr-Mo-V[J].Materials Science and Engineering:A,2010, 527(7):1933-1937.
[15] WYCISK E, EMMELMANN C, SIDDIQUE S, et al.High cycle fatigue (HCF) performance of Ti-6Al-4V alloy processed by selective laser melting[J].Advanced Materials Research,2013,816-817:134-139.
[16] ÅKERFELDT P, PEDERSON R, ANTTI M-L.A fractographic study exploring the relationship between the low cycle fatigue and metallurgical properties of laser metal wire deposited Ti-6Al-4V[J].International Journal of Fatigue,2016, 87:245-256.
[17] MOLAEI R, FATEMI A, SANAEI N, et al.Fatigue of additive manufactured Ti-6Al-4V, Part II:The relationship between microstructure, material cyclic properties, and component performance[J].International Journal of Fatigue,2019, 132:105363.
[18] GREITEMEIER D, PALM F, SYASSEN F, et al.Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting[J].International Journal of Fatigue,2017, 94:211-217.
[19] LEUDERS S, THONE M, RIEMER A, et al.On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting:Fatigue resistance and crack growth performance[J].International Journal of Fatigue,2013, 48:300-307.
[20] EDWARDS P, RAMULU M.Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J].Materials Science and Engineering:A, 2014, 598:327-337.
[21] STERLING A J, TORRIES B, SHAMSAEI N, et al.Fatigue behavior and failure mechanisms of direct laser deposited Ti-6Al-4V[J].Materials Science and Engineering:A, 2016, 655:100-112.
[22] LIU Z, LIU P F, WANG L, et al.Fatigue properties of Ti-6.5Al-3.5Mo-l.5Zr-0.3Si alloy produced by direct laser deposition[J].Materials Science and Engineering:A,2018, 716:140-149.
[23] DI CICCO F, FANELLI P, VIVIO F.Fatigue reliability evaluation of riveted lap joints using a new rivet element and DFR[J].International Journal of Fatigue,2017, 101:430-438.
[24] HUANG W, WANG T-J, GARBATOV Y, et al.Fatigue reliability assessment of riveted lap joint of aircraft structures[J].International Journal of Fatigue,2012, 43:54-61.
[25] WALKER K F, LIU Q, BRANDT M.Evaluation of fatigue crack propagation behaviour in Ti-6Al-4V manufactured by selective laser melting[J].International Journal of Fatigue,2017, 104:302-308.
[26] HE X F, WANG T S, WANG X B, et al.Fatigue behavior of direct laser deposited Ti-6.5Al-2Zr-1Mo-1V titanium alloy and its life distribution model[J].Chinese Journal of Aeronautics,2018, 31(11):2124-2135.
[27] WANG T S, HE X F, WANG X B, et al.P-S-N curve description of laser metal deposition Ti-6.5Al-2Zr-1Mo-1V titanium alloy after duplex annealing[J].Materials, 2019, 12(3):418.
[28] 刘文珽.军用飞机结构疲劳设计细节疲劳额定值方法指南[M].北京:国防工业出版社, 2012:1-10. LIU W T.Military aircraft structural fatigue design detail fatigue rating methodological guide[M].Beijing:National Defense Industry Press, 2012:1-10(in Chinese).
[29] RICE R C.Metallic Materials Properties Development and Standardization (MMPDS)[M].2003.
文章导航

/