固体力学与飞行器总体设计

被动变弦长提升变转速尾桨性能

  • 万浩云 ,
  • 韩东 ,
  • 张宇杭
展开
  • 南京航空航天大学 航空学院 直升机旋翼动力学国家级重点实验室, 南京 210016

收稿日期: 2020-11-17

  修回日期: 2021-02-21

  网络出版日期: 2021-04-27

基金资助

国家自然科学基金(11972181);旋翼空气动力学重点实验室开放基金(RAL20200104);江苏省第十五批"六大人才高峰"高层次人才项目(GDZB-013);江苏高校优势学科建设工程资助项目(PAPD)

Performance improvement of variable speed tail rotors by passively extendable chord

  • WAN Haoyun ,
  • HAN Dong ,
  • ZHANG Yuhang
Expand
  • National Key Laboratory of Rotorcraft Aeromechanics, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-11-17

  Revised date: 2021-02-21

  Online published: 2021-04-27

Supported by

National Natural Science Foundation of China(11972181); the Open Research Foundation of the Key Aerodynamics Laboratory(RAL20200104); the Six Talent Peaks Project in Jiangsu Province(GDZB-013); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institute(PAPD)

摘要

为探讨被动变弦长对变转速尾桨性能的提升潜力,建立直升机飞行性能分析模型,包括旋翼动力学综合模型、尾桨模型、机体模型与前飞配平模型,由UH-60A直升机飞行试验数据验证了模型正确性。研究结果表明,直升机悬停时,变弦长对尾桨功率影响很小;低中速飞行时,变弦长使功率小幅增加;高速飞行时,变弦长可大幅降低功率。被动变弦长适应于尾桨转速降低后的气动环境,高速飞行时,尾桨转速降低,变弦长伸长量增加,变弦长降低尾桨功率效果增强。前飞速度300 km/h、90%额定转速时,功率增加10.1%,布置变弦长后为1.59%。变弦长适合布置于尾桨半径70%~90%处。直升机高速飞行时,变弦长伸长量增加,功率节省量增加。直升机起飞重量降低,功率节省量增加。

本文引用格式

万浩云 , 韩东 , 张宇杭 . 被动变弦长提升变转速尾桨性能[J]. 航空学报, 2022 , 43(2) : 224981 -224981 . DOI: 10.7527/S1000-6893.2021.24981

Abstract

To study the performance improvement potential of variable speed tail rotors by the passively extendable chord, we establish a helicopter flight performance analysis model, including a comprehensive rotor model, a tail rotor model, a fuselage model, and a propulsive trim method. The flight data of the UH-60A helicopter is utilized to validate this model. The results show that the extendable chord has little effect on the power while the helicopter is hovering. During low to medium speed flight, the extendable chord slightly increases the power, while during high speed flight, the power can be significantly reduced. When the tail rotor speed is reduced, the passively extendable chord is adapted to the aerodynamic environment. During high speed flight, the chord length increases with the reduced speed, and the tail rotor power reduction is increased. When the forward speed is 300 km/h and the tail rotor speed is 90% of the nominal speed, the power increases by 10.1%, which then turns to 1.59% when the extendable chord is used. The extendable chord is suitable to be placed in the range of 70%R~90%R (tail rotor radius). The power saving increases with the extendable chord length increase during high speed flight, or when the helicopter take-off weight decreases.

参考文献

[1] MISTRY M, GANDHI F. Helicopter performance improvement with variable rotor radius and RPM[J].Journal of the American Helicopter Society, 2014, 59(4):42010.1-42010.19.
[2] MISTÉ G A, BENINI E, GARAVELLO A,et al. A methodology for determining the optimal rotational speed of a variable RPM main rotor/turboshaft engine system[J].Journal of the American Helicopter Society, 2015, 60(3):1-11.
[3] PROUTY R W. Should we consider variable rotor speeds?[J].Vertiflite, 2004, 50(4):24-27.
[4] STEINER J, GANDHI F, YOSHIZAKI Y. An investigation of variable rotor RPM on performance and trim[C]//64th Annual Forum Proceedings of the American Helicopter Society,2008:697-705.
[5] DIOTTAVIO J, FRIEDMANN D. Operational benefit of an optimal, widely variable speed rotor[C]//66th Annual Forum Proceedings of the American Helicopter Society,2010:1865-1871.
[6] HAN D, BARAKOS G N. Variable-speed tail rotors for helicopters with variable-speed main rotors[J].Aeronautical Journal-New Series, 2017, 121(1238):1-16.
[7] DONG C, HAN D, YU L. Performance analysis of variable speed tail rotors with Gurney flaps[J].Chinese Journal of Aeronautics, 2018, 31(11):2104-2110.
[8] SEHGAL A, BOYLE E. Design and development of a four-bladed tail rotor system for the USMC H-1 upgrade program[J].Journal of the American Helicopter Society, 2004, 49(2):99-108.
[9] PRITCHARD J A, KUNZ D L. A redesigned tail rotor for improvement of CH-53E high-altitude performance[J].Journal of the American Helicopter Society, 2006, 51(3):266.
[10] 韩东, 林长亮, 李建波. 旋翼变体技术对直升机性能的提升[J].航空动力学报, 2014, 29(9):2017-2023. HAN D, LIN C L, LI J B. Helicopter performance improvement by rotor morphing technologies[J].Journal of Aerospace Power, 2014, 29(9):2017-2023(in Chinese).
[11] 韩东, 董晨, 魏武雷, 等. 自适应旋翼性能研究进展[J].航空学报, 2018, 39(4):021603. HAN D, DONG C, WEI W L, et al. Research progress in performance of adaptive rotor[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(4):021603(in Chinese).
[12] LÉON O, HAYDEN E, GANDHI F. Rotorcraft operating envelope expansion using extendable chord sections[J].Annual Forum Proceedings-AHS International, 2009, 3:1940-1953.
[13] KHOSHLAHJEH M, GANDHI F. Extendable chord rotors for helicopter envelope expansion and performance improvement[J].Journal of the American Helicopter Society, 2014, 59(1):12007.1-12007.10.
[14] KANG H, SABERI H, GANDHI F. Dynamic blade shape for improved helicopter rotor performance[J].Journal of the American Helicopter Society, 2010, 55(3):1-11.
[15] HAN D, YANG K L, BARAKOS G N. Extendable chord for improved helicopter rotor performance[J].Aerospace Science and Technology, 2018, 80:445-451.
[16] HAN D, BARAKOS G. Rotor loads reduction by dynamically extendable chord[J].AIAA Journal, 2019, 58(1):1-9.
[17] PETERS D A, HAQUANG N. Technical note:Dynamic inflow for practical applications[J].Journal of the American Helicopter Society, 2009, 33(4):64-68.
[18] HAN D, SMITH E C. Lagwise loads analysis of a rotor blade with an embedded chordwise absorber[J].Journal of Aircraft, 2009, 46(4):1280-1290.
[19] HAN D, WANG H W, GAO Z. Aeroelastic analysis of a shipboard helicopter rotor with ship motions during engagement and disengagement operations[J].Aerospace Science and Technology, 2012, 16(1):1-9.
[20] OWEN D R J, HINTON E. Finite elements in plasticity:Theory and practice[M]. Swansea:Pineridge Press, 1980:431-436.
[21] PADFIELD G D. Helicopter flight dynamics:The theory and application of flying qualities and simulation modelling[M]. 2nd. Oxford:Blackwell Publishing Ltd, 2007:142-146.
[22] LYNN R R, ROBINSON F D, BATRA N N, et al. Tail rotor design part I:Aerodynamics[J].Journal of the American Helicopter Society, 1970, 15(4):2-15.
[23] LEISHMAN J G. Principles of helicopter aerodynamics[M]. 2nd, New York:Cambridge University Press, 2006:116.
[24] YEO H, BOUSMAN W G, JOHNSON W. Performance analysis of a utility helicopter with standard and advanced rotors[J].Journal of the American Helicopter Society, 2004, 49(3):250-270.
[25] HILBERT K B. A mathematical model of the UH-60 helicopter:NASA-TM-85890[R].Washington,D.C.:NASA, 1984.
[26] BUCKANIN R M, HERBST M K, LOCKWOOD R A, et al. Airworthiness and flight characteristics test of a sixth year production UH-60A:USAAEFA Project No. 83-24[R].United States Army Aviation Engineering Flight Activity, Edwards Air Force Base, 1985.
[27] NAGATA J I, PIOTROWSKI J L, YOUNG C J, et al. Baseline performance verification of the 12th year production UH-60A black hawk helicopter:USAAEFA Project No. 87-32[R]. United States Army Aviation Engineering Flight Activity, Edwards Air Force Base, 1989.
文章导航

/