论文

高超声速典型弹道下的壁板热气动弹性动力学分析

  • 谢丹 ,
  • 冀春秀 ,
  • 景兴建
展开
  • 1. 西北工业大学 航天学院, 西安 710072;
    2. 香港理工大学 机械工程系, 香港 999077

收稿日期: 2020-10-08

  修回日期: 2021-01-15

  网络出版日期: 2021-04-27

基金资助

国家自然科学基金(11972294);陕西省自然科学基金(2020JQ-128)

Dynamics analysis of panel aerothermoelasticity in typical hypersonic trajectories

  • XIE Dan ,
  • JI Chunxiu ,
  • JING Xingjian
Expand
  • 1. School of Astronautics, Shaanxi Key Laboratory of Aerospace Flight Vehicle Design, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China

Received date: 2020-10-08

  Revised date: 2021-01-15

  Online published: 2021-04-27

Supported by

National Natural Science Foundation of China (11972294); Shaanxi Natural Science Foundation(2020JQ-128)

摘要

对高超声速流中带有热防护系统(TPS)的二维壁板进行了热气动弹性的双向耦合建模与分析,采用三阶活塞理论计算气动力,通过参考焓法获得气动热流,在有限差分法的基础上进行结构热传导计算,拟合了结构材料特性随温度退化的曲线,最后将气动热模块、气动弹性模块进行双向耦合以考虑气动热与结构形变之间的相互反馈,并在2种典型弹道状态下进行热气动弹性响应分析。结果表明,在X-34A的设计弹道下,双向耦合分析会引起更加剧烈的热应力与热弯矩的变化与较长的瞬态混沌过程。在FALCON弹道下,双向耦合得到的结果加热更为剧烈,而温度下降的过程也更快。对比2种弹道发现,长时间的高超声速飞行更容易引发颤振,而机动性较强的弹道面临的主要问题则是屈曲,需要考虑材料的应力及强度特性。同时说明了双向耦合策略对于现代飞行器在弹道状态下工作的热气弹响应分析的必要性。

本文引用格式

谢丹 , 冀春秀 , 景兴建 . 高超声速典型弹道下的壁板热气动弹性动力学分析[J]. 航空学报, 2021 , 42(11) : 524843 -524843 . DOI: 10.7527/S1000-6893.2021.24843

Abstract

This study builds a two-way coupling model of aerothermoelasticity for two-dimensional panels with TPS in hypersonic flow. The aerodynamic force is calculated by the third-order piston theory, the aerodynamic heat obtained by the Eckert's reference enthalpy method, and the heat transfer carried out on the basis of the finite difference method, with the material properties of the structure fitted with temperature degradation. Finally, the aerothermal module and the aeroelastic module are two-way coupled considering the effect of panel deflection on aerodynamic heat flux, and the aerothermoelastic analysis is conducted in two typical trajectories. The results show that the two-way coupling analysis would cause more severe changes in thermal stress and thermal bending moment, leading to a longer transient chaos for the X-43A trajectory. In the FALCON trajectory, with the two-way coupling, the aerodynamic heating is more intense with a faster temperature drop. Comparison of the two trajectories demonstrates that long-term hypersonic flights are more likely to cause flutter. However, the main problem faced by stronger maneuverability trajectories is buckling, and the strength characteristics of the material need to be considered. Furthermore, it illustrates the necessity of two-way coupling analysis to accurately obtain the aerothermoelastic response of modern aircraft under trajectory conditions.

参考文献

[1] 耿丹萍. 基于双向耦合的高超声速壁板热气动弹性问题研究[D]. 南京:南京航空航天大学, 2012:1-2. GENG D P. Aerothermal-aeroelastic two-way coupling based aerothermoelastic analysis of an insulated panel in hypersonic flow[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:1-2(in Chinese).
[2] CULLER A J, MCNAMARA J J. Studies on fluid-thermal-structural coupling for aerothermoelasticity in hypersonic flow[J]. AIAA Journal, 2010, 48(8):1721-1738.
[3] CULLER A J, MCNAMARA J J. Impact of fluid-thermal-structural coupling on response prediction of hypersonic skin panels[J]. AIAA Journal, 2011, 49(11):2393-2406.
[4] 陈鑫. 高超声速飞行器气动-热-结构建模及模型降阶研究[D]. 北京:北京理工大学, 2015. CHEN X. Studies on aerodynamic-structural-thermal modeling and reduced order modeling of hypersonic vehicles[D]. Beijing:Beijing Institute of Technology, 2015(in Chinese).
[5] 季卫栋. 高超声速气动力/热/结构多场耦合问题数值模拟技术研究[D]. 南京:南京航空航天大学, 2016:102-116. JI W D. Numerical simulation of hypersonic fluid-thermal-structural coupled problem[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016:102-116(in Chinese).
[6] 徐敏,安效民. 空气与气体动力学基础[M]. 西安:西北工业大学出版社, 2016:90-101. XU M, AN X M. Principle of aerodynamics[M]. Xi'an:Northwestern Polytechnical University Press, 2016:90-101(in Chinese).
[7] BAILIE J A, MCFEELY J E. Panel flutter in hypersonic flow[J]. AIAA Journal, 1968, 6(2):332-337.
[8] DOWELL E H. Nonlinear oscillations of a fluttering plate. II[J]. AIAA Journal, 1967, 5(10):1856-1862.
[9] MCNAMARA J J, GOGULAPATI A, FRIEDMANN P P, et al. Approximate modeling of unsteady aerodynamic loads in hypersonic aeroelasticity[C]//Proceedings of the International Forum on Aeroelasticity and Structural Dynamics, 2007.
[10] THORNTON E A. Thermal structures for aerospace applications[M].Reston:AIAA, 1996:253-284.
[11] XIE D, XU M, DAI H H, et al. New look at nonlinear aerodynamics in analysis of hypersonic panel flutter[J]. Mathematical Problems in Engineering, 2017, 2017:1-13.
[12] ECKET E R G. Engineering relations for heat transfer and friction in high-velocity laminar and turbulent boundary-layer flow over surfaces with constant pressure and temperature[J]. Transactions of the ASME, 1956, 78(6):1273-1283.
[13] ZOBY E V, GRAVES R A. Comparison of turbulent prediction methods with ground and flight test heating data[J]. AIAA Journal, 1977, 15(7):901-902.
[14] MYERS D E. Parametric weight comparison of advanced metallic, ceramic tile, and ceramic blanket thermal protection systems[M]. Washington,D.C.:NASA, 2000.
[15] ANDERSON D, TANNEHILL J C, PLETCHER R H. Computational fluid mechanics and heat transfer[M]. Boca Raton:CRC Press, 2016.
[16] XIE D, DONG B, JING X J. Effect of thermal protection system size on aerothermoelastic stability of the hypersonic panel[J]. Aerospace Science and Technology, 2020, 106:106170.
[17] US DOD. Metallic materials and elements for aerospace vehicle structures[R].Washington,D.C.:United Sta-tes Department of Defense,1998.
[18] 马汉东. 高超声速技术项目"Hyper-X"气动研究方法学[J]. 力学与实践, 2014, 36(3):261-268, 277. MA H D. Methodology of aerodynamic research for hypersonic technical project "hyper-X"[J]. Mechanics in Engineering, 2014, 36(3):261-268, 277(in Chinese).
[19] 唐和根,全刚,张同彤. 一定高度上大气密度的计算方法[J]. 计算机工程与应用, 2016, 52(SI):97-100. TANG H G, QUAN G, ZHANG T T. Calculate method of atmospheric density at certain altitude[J]. Computer Engineering and Applications, 2016, 52(SI):97-100(in Chinese).
[20] 李佳伟, 王江峰, 程克明, 等. 高超声速全机外形气动加热与结构传热快速计算方法[J]. 空气动力学学报, 2019, 37(6):956-965. LI J W, WANG J F, CHENG K M, et al. Rapid method for calculating aero-heating coupled with structure heat transfer on hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2019, 37(6):956-965(in Chinese).
[21] 张志鸿. 美国空间军事系统发展新动向[J]. 现代防御技术, 2006, 34(5):1-12. ZHANG Z H. New trend in development of US space military system[J]. Modern Defence Technology, 2006, 34(5):1-12(in Chinese).
[22] 胡雨濛. 近空间高超声速气动热的数值模拟[D]. 北京:北京交通大学, 2018:2-4. HU Y M. Numerical simulation of aerodynamic heating in hypersonic flow in near space[D]. Beijing:Beijing Jiaotong University, 2018:2-4(in Chinese).
文章导航

/