论文

S型碳纤维褶皱夹芯结构低速冲击响应特性实验研究

  • 邓云飞 ,
  • 周楠 ,
  • 田锐 ,
  • 魏刚
展开
  • 中国民航大学 航空工程学院, 天津 300300

收稿日期: 2021-03-05

  修回日期: 2021-03-31

  网络出版日期: 2021-04-27

基金资助

国家自然科学基金(11702317);航空科学基金(201918067001);中央高校基本科研业务费中国民航大学专项资助(3122019092)

Response characteristics of sandwich structure with S-shaped CFRP folded core under low velocity impact

  • DENG Yunfei ,
  • ZHOU Nan ,
  • TIAN Rui ,
  • WEI Gang
Expand
  • College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China

Received date: 2021-03-05

  Revised date: 2021-03-31

  Online published: 2021-04-27

Supported by

National Natural Science Foundation of China (11702317); Aeronautical Science Foundation of China (201918067001); Fundamental Research Funds for the Central Universities Civil Aviation University of China Special Funding (3122019092)

摘要

为研究S型碳纤维褶皱夹芯结构在低速冲击下的力学响应特性,先以模压法制备了S型褶皱芯子,再通过二次胶接工艺对面-芯粘接固化获得S型碳纤维褶皱夹芯结构。使用直径为20 mm的柱形冲头预加载不同能量冲击结构的节点和基座位置,研究该结构两个典型位置在不同冲击能量下的损伤模式及响应特性。结果表明:不同冲击能量下,上面板损伤主要为纤维剪切断裂,芯层发生拉伸及压溃断裂,下面板主要发生纤维拉伸撕裂和基体开裂;相同冲击能量下,夹芯板节点冲击在损伤深度及载荷峰值方面表现出更优的抗冲击性能;从耗能角度看,高能冲击条件下节点冲击较基座冲击吸收更多能量。

本文引用格式

邓云飞 , 周楠 , 田锐 , 魏刚 . S型碳纤维褶皱夹芯结构低速冲击响应特性实验研究[J]. 航空学报, 2022 , 43(6) : 525446 -525446 . DOI: 10.7527/S1000-6893.2021.25446

Abstract

To study the mechanical response characteristics of the sandwich structure S-type CFRP folded core under low speed impact, the S-shaped folded core was prepared by the molding method, and then the sandwich structure with S-shaped CFRP folded core was obtained by face-to-core bonding and curing. The cylindrical punch with diameter 20 mm is preloaded with different energy to impact the node and base position of the structure, and the damage mode and response characteristics of the two typical positions of the structure under different impact energy are studied. The results show that fiber shear fracture is the main damage for the upper panel is, while tensile and crushing fracture for the core layer; fiber tensile tearing and matrix cracking are the main damages for the lower panel under different impact energy. Under the same impact energy, the node of sandwich panel shows better impact resistance in terms of damage depth and peak load. From the perspective of energy consumption, the node of sandwich panel absorbs more energy than the base under high energy impact.

参考文献

[1] KAZEMIANFAR B, ESMAEELI M, NAMI M R. Response of 3D woven composites under low velocity impact with different impactor geometries[J]. Aerospace Science and Technology, 2020, 102:105849.
[2] REN P, DING C M, LIU Y X, et al. Dynamic response and failure of carbon/epoxy composite sandwich subjected to underwater impulsive loading[J]. International Journal of Impact Engineering, 2020, 143:103614.
[3] WOWK D, REYNO T, YEUNG R, et al. An experimental and numerical investigation of core damage size in honeycomb sandwich panels subject to low-velocity impact[J]. Composite Structures, 2020, 254:112739.
[4] LIU J X, HE W T, XIE D, et al. The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures[J]. Composites Part B:Engineering, 2017, 111:315-331.
[5] 唐玉玲, 陈浩, 平学成, 等. 碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构在竖向载荷下的力学性能[J]. 复合材料学报, 2021, 38(3):797-808. TANG Y L, CHEN H, PING X C, et al. Mechanical properties of carbon fiber reinforced epoxy composite pyramid lattice sandwich prosthetic foot structure under vertical load[J]. Acta Materiae Compositae Sinica, 2021, 38(3):797-808(in Chinese).
[6] GATTAS J M, WU W N, YOU Z. Miura-base rigid origami:Parameterizations of first-level derivative and piecewise geometries[J]. Journal of Mechanical Design, 2013, 135(11):111011.
[7] GATTAS J M, YOU Z. Quasi-static impact of indented foldcores[J]. International Journal of Impact Engineering, 2014, 73:15-29.
[8] ZANG S X, ZHOU X, WANG H, et al. Foldcores made of thermoplastic materials:Experimental study and finite element analysis[J]. Thin-Walled Structures, 2016, 100:170-179.
[9] HEIMBS S, MIDDENDORF P, KILCHERT S, et al. Experimental and numerical analysis of composite folded sandwich core structures under compression[J]. Applied Composite Materials, 2007, 14(5-6):363-377.
[10] 熊健, 杜昀桐, 杨雯, 等. 轻质复合材料夹芯结构设计及力学性能最新进展[J]. 宇航学报, 2020, 41(6):749-760. XIONG J, DU Y T, YANG W, et al. Research progress on design and mechanical properties of lightweight composite sandwich structures[J]. Journal of Astronautics, 2020, 41(6):749-760(in Chinese).
[11] DU Y T, SONG C P, XIONG J, et al. Fabrication and mechanical behaviors of carbon fiber reinforced composite foldcore based on curved-crease origami[J]. Composites Science and Technology, 2019, 174:94-105.
[12] 周晨, 王志瑾, 支骄杨. 主动冷却皱褶芯材夹层板的热力分析[J]. 固体火箭技术, 2014, 37(4):545-550. ZHOU C, WANG Z J, ZHI J Y. Thermal-mechanical analysis of actively cooled folded core sandwich panels[J]. Journal of Solid Rocket Technology, 2014, 37(4):545-550(in Chinese).
[13] ZHOU X, WANG H, YOU Z. Mechanical properties of Miura-based folded cores under quasi-static loads[J]. Thin-Walled Structures, 2014, 82:296-310.
[14] 杜昀桐, 熊健. 复合材料S型褶皱夹芯结构制备及平压性能测试[EB/OL]. (2017-05-04)[2017-05-04]. http://www.paper.edu.cn/releasepaper/content/201705-305. DU Y T, XIONG J. Fabrication and test in compression of composite S-foldcore sandwich[EB/OL]. (2017-05-04)[2017-05-04]. http://www.paper.edu.cn/releasepaper/content/201705-305(in Chinese).
[15] 蔡克乾, 靳明山, 姜开宇. 新型折叠夹芯结构材料研究进展[J]. 材料导报, 2015, 29(7):129-133. CAI K Q, JIN M S, JIANG K Y. Review of progress in materials for sandwich structure with folded core[J]. Materials Review, 2015, 29(7):129-133(in Chinese).
[16] SILVERBERG J L, EVANS A A, MCLEOD L, et al. Using origami design principles to fold reprogrammable mechanical metamaterials[J]. Science, 2014, 345(6197):647-650.
[17] FELTON S, TOLLEY M, DEMAINE E, et al. A method for building self-folding machines[J]. Science, 2014, 345(6197):644-646.
[18] 张延昌, 王自力, 张世联, 等. 基于折叠式夹层板船体结构耐撞性设计[J]. 船舶工程, 2009, 31(6):1-5. ZHANG Y C, WANG Z L, ZHANG S L, et al. Hull structural crashworthy design based on folding sandwich panel[J]. Ship Engineering, 2009, 31(6):1-5(in Chinese).
[19] BASILY B, ELSAYED E A. Dynamic axial crushing of multilayer core structures of folded Chevron patterns[J]. International Journal of Materials and Product Technology, 2004, 21(1-3):169-185.
[20] HEIMBS S, CICHOSZ J, KLAUS M, et al. Sandwich structures with textile-reinforced composite foldcores under impact loads[J]. Composite Structures, 2010, 92(6):1485-1497.
[21] HEIMBS S, MIDDENDORF P, HAMPF C, et al. Aircraft sandwich structures with folded core under impact load[C]//Proceedingds of the 8th International Conference on Sandwich Structures. Porto:ICCS8, 2008:369-380.
[22] GATTAS J M, YOU Z. The behaviour of curved-crease foldcores under low-velocity impact loads[J]. International Journal of Solids and Structures, 2015, 53:80-91.
[23] KILCHERT S, JOHNSON A F, VOGGENREITER H. Modelling the impact behaviour of sandwich structures with folded composite cores[J]. Composites Part A:Applied Science and Manufacturing, 2014, 57:16-26.
[24] KLAUS M, REIMERDES H G, GUPTA N K. Experimental and numerical investigations of residual strength after impact of sandwich panels[J]. International Journal of Impact Engineering, 2012, 44:50-58.
[25] 张培文, 李世强, 王志华, 等. 爆炸载荷作用下具有可折叠芯层夹芯梁的动态响应[J]. 爆炸与冲击, 2018, 38(1):140-147. ZHANG P W, LI S Q, WANG Z H, et al. Dynamic response of sandwich beam with foldable core under blast loading[J]. Explosion and Shock Waves, 2018, 38(1):140-147(in Chinese).
[26] 王涛. 新型褶皱夹芯结构的设计及其力学性能分析[D]. 哈尔滨:哈尔滨工业大学, 2018. WANG T. Design and mechanical properties analysis of new folds sandwich structure[D]. Harbin:Harbin Institute of Technology, 2018(in Chinese).
[27] STURM R, FISCHER S. Virtual design method for controlled failure in foldcore sandwich panels[J]. Applied Composite Materials, 2015, 22(6):791-803.
[28] SUN Y G, LI Y X. Prediction and experiment on the compressive property of the sandwich structure with a chevron carbon-fibre-reinforced composite folded core[J]. Composites Science and Technology, 2017, 150:95-101.
[29] 杨眉. 飞机复合材料结构分层损伤研究[D]. 上海:上海交通大学, 2011. YANG M. Study on the delamination damage of aircraft structure composite laminates[D]. Shanghai:Shanghai Jiao Tong University, 2011(in Chinese).
[30] CHEN Y, HOU S J, FU K K, et al. Low-velocity impact response of composite sandwich structures:Modelling and experiment[J]. Composite Structures, 2017, 168:322-334.
[31] WANG H X, RAMAKRISHNAN K R, SHANKAR K. Experimental study of the medium velocity impact response of sandwich panels with different cores[J]. Materials & Design, 2016, 99:68-82.
文章导航

/