电子电气工程与控制

一种基于信息素图的无人机高效通信覆盖方法

  • 任少睿 ,
  • 陆忠梅 ,
  • 石远明 ,
  • 李立欣 ,
  • 陈巍
展开
  • 1. 清华大学 电子信息工程系, 北京 100084;
    2. 贵州电子信息职业技术学院, 贵州 556000;
    3. 上海科技大学 信息科学与技术学院, 上海 201210;
    4. 西北工业大学 电子信息学院, 西安 710129

收稿日期: 2020-11-03

  修回日期: 2020-12-14

  网络出版日期: 2021-04-27

基金资助

国家重点研发计划(2018YFB1801100,2018YFA0701600)

UAV communication coverage model based on pheromone map

  • REN Shaorui ,
  • LU Zhongmei ,
  • SHI Yuanming ,
  • LI Lixin ,
  • CHEN Wei
Expand
  • 1. Electronic Engineering, Tsinghua University, Beijing 100084, China;
    2. Guizhou Vocational Technology College of Electronics & Information, Guizhou 556000, China;
    3. School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China;
    4. School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710129, China

Received date: 2020-11-03

  Revised date: 2020-12-14

  Online published: 2021-04-27

Supported by

National Key R&D Program of China(2018YFB1801100, 2018YFA0701600)

摘要

因无人机灵活性强,覆盖效果好,越来越多的实际情境中选择借助多无人机进行高效的通信覆盖。而实际应用中,对于多无人机系统灵活性、低时延、长续航及安全性的要求需重点考量。为提高无人机持续通信覆盖效果,在无人机相对稀疏这一具体情况下,提出了一种基于信息素图的、限制无人机转弯半径的分布式无人机自主规划通信覆盖方法,保证其灵活性、低时延及长续航的性能;通过引入锚节点,设计了信息素向导信息的交互模型,保证了无人机的安全性。该方法在待覆盖区域最大接入时间间隔方面远优于半随机择取航向的方式,同时平均接入时间间隔下降约15%;对比无地理价值描述的普通信息素图,该方法的平均接入时间间隔与最大接入时间间隔均下降约6%。通过无人机间的解耦,避免了分布式方法面临的无人机间异步问题。

本文引用格式

任少睿 , 陆忠梅 , 石远明 , 李立欣 , 陈巍 . 一种基于信息素图的无人机高效通信覆盖方法[J]. 航空学报, 2022 , 43(2) : 324939 -324939 . DOI: 10.7527/S1000-6893.2021.24939

Abstract

Due to the high flexibility and good coverage capability of UAV, it is popular to choose multi-UAV for efficient communication coverage in practical applications. However, the requirements for the multi-UAV system with flexibility, low delay, long endurance and security need to be considered. To improve the continuous communication coverage capability of UAV, in the case of relatively sparse UAV, this paper proposes a method for UAV dynamic planning communication coverage, in which the pheromone map is employed and the turning radius of UAV is limited, so as to ensure flexibility, low delay and long endurance of the UAV. By introducing anchor nodes, the interaction model of pheromone guidance information is designed to ensure security of the UAV. Compared with the semi random heading method, the method proposed is much better than in terms of the maximum access time interval of the area to be covered, and can reduce the average access time interval by about 15%. Compared with the general pheromone map without geographical value description, the method proposed can reduce the average access time interval and the maximum access time interval of the method by about 6%. Through decoupling between UAVs, this method can avoid the asynchronous problem between UAVs.

参考文献

[1] TIAN J, SHEN L C. A MPC based cooperative search al-gorithm in uncertainty environment[J].International Journal of Information Technology and Intelligent Computing, 2006, 1(2):365-377.
[2] 姜霞, 曾宪琳, 孙健, 等. 多飞行器的分布式优化研究现状与展望[J].航空学报, 2021, 42(4):524551. JIANG X, ZENG X L, SUN J, et al. Research status and prospect of distributed optimization for multiple aircraft[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524551(in Chinese).
[3] 相晓嘉, 闫超, 王菖, 等. 基于深度强化学习的固定翼无人机编队协调控制方法[J].航空学报, 2021, 42(4):524551. XIANG X J, YAN C, WANG C, et al. Coordination control method for fixed-wing UAV formation through deep reinforcement learning[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524551(in Chinese).
[4] YAN C, XIANG X J. A path planning algorithm for UAV based on improved Q-learning[C]//20182nd International Conference on Robotics and Automation Sciences (ICRAS). Piscataway:IEEE Press, 2018:1-5.
[5] SHI W, LING Q, WU G, et al. EXTRA:An exact first-order algorithm for decentralized consensus optimization[J].SIAM Journal on Optimization, 2015, 25(2):944-966.
[6] SUNDHAR RAM S, NEDIĆ A, VEERAVALLI V V. Distributed stochastic subgradient projection algorithms for convex optimization[J].Journal of Optimization Theory and Applications, 2010, 147(3):516-545.
[7] 彭辉, 沈林成, 朱华勇. 基于分布式模型预测控制的多UAV协同区域搜索[J].航空学报, 2010, 31(3):593-601. PENG H, SHEN L C, ZHU H Y. Multiple UAV cooperative area search based on distributed model predictive control[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(3):593-601(in Chinese).
[8] 吴傲, 杨任农, 梁晓龙, 等. 基于信息素决策的无人机集群协同搜索算法[J].北京航空航天大学学报, 2021, 47(4):814-827. WU A, YANG R N, LIANG X L, et al. Cooperative search algorithm based on pheromone decision for UAV swarm[J].Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4):814-827(in Chinese).
[9] 姬翔. 多特征融合的旋翼无人机能耗优化路径规划方法研究[D]. 西安:西北大学, 2021. JI X. Research on path planning methods using multi-feature fusion for optimizing energy consumption of rotary-wing UAVs[D]. Xi'an:Northwest University, 2021(in Chinese).
[10] SAUTER J A, MATTHEWS R, VAN DYKE PARUNAK H, et al. Performance of digital pheromones for swarming vehicle control[C]//Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems-AAMAS '05. New York:ACM Press, 2005:903-910.
[11] 张养瑞. 对雷达网的多机伴随式协同干扰技术研究[D]. 北京:北京理工大学, 2015. ZHANG Y R. Research on key technologies of cooperative ECM in multi-syndrome jammers for countering radar net[D]. Beijing:Beijing Institute of Technology, 2015(in Chinese).
[12] 柏鹏, 王玉冰, 梁晓龙, 等. 无人机对雷达组网航迹欺骗综述[J].航空学报, 2020, 41(10):023912. BAI P, WANG Y B, LIANG X L, et al. Phantom track deception against radar networks using UAVs:Review[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(10):023912(in Chinese).
[13] SUN H M, DUO B, WANG Z Q, et al. Aerial cooperative jamming for cellular-enabled UAV secure communication network:Joint trajectory and power control design[J].Sensors (Basel, Switzerland), 2019, 19(20):4440.
[14] 艾力, 杨冰玉. 大疆精灵4 RTK航测数据在地形图测绘中的应用[J].国土资源导刊, 2020, 17(3):62-65. AI L, YANG B Y. Application of DJI phantom 4 RTK aerial survey data in topographic mapping[J].Land & Resources Herald, 2020, 17(3):62-65(in Chinese).
[15] 余莎莎, 黄浩, 刘泱杰, 等. 基于双目技术的无人机自主三维定位方法研究[J].计算机测量与控制, 2018, 26(9):223-226, 231. YU S S, HUANG H, LIU Y J, et al. Binocular stereovision technology based autonomous 3D localization method for unmanned aerial vehicles[J].Computer Measurement & Control, 2018, 26(9):223-226, 231(in Chinese).
[16] 郭关有, 姚仁和, 杜白雨, 等. 基于双目视觉的无人机室内定位研究[J].沈阳航空航天大学学报, 2019, 36(5):66-75. GUO G Y, YAO R H, DU B Y, et al. Research on indoor positioning of UAV based on binocular vision[J].Journal of Shenyang Aerospace University, 2019, 36(5):66-75(in Chinese).
[17] 王志刚, 赵海良, 王星. 基于图像识别的模糊测距方法[J].重庆理工大学学报(自然科学), 2020, 34(1):58-63. WANG Z G, ZHAO H L, WANG X. Fuzzy ranging method based on image recognition[J].Journal of Chongqing University of Technology (Natural Science), 2020, 34(1):58-63(in Chinese).
[18] 郑明春, 何晓雄. 侧射式天线阵和端射式天线阵的角分布[J].合肥工业大学学报(自然科学版), 2007, 30(11):1528-1530. ZHENG M C, HE X X. Radiation angular distribution of side-fire arrays and end-fire arrays[J].Journal of Hefei University of Technology (Natural Science), 2007, 30(11):1528-1530(in Chinese).
[19] 余文彬. 基于无人自主飞行器的无线传感器网络AOA定位系统[D]. 温州:温州大学, 2019. YU W B. AOA location method for wireless sensor networks based on unmanned aerial vehicle[D]. Wenzhou:Wenzhou University, 2019(in Chinese).
[20] 郭青. 基于接收信号强度的电磁辐射源定位研究[D]. 南京:南京师范大学, 2018. GUO Q. Research on electromagnetic emitter location based on received signal strength[D]. Nanjing:Nanjing Normal University, 2018(in Chinese).
[21] 李康, 丁国如, 李京华, 等. 无源定位技术发展动态及其应用分析[J].航空兵器, 2021, 28(2):104-112. LI K, DING G R, LI J H, et al. Development and application analysis of passive localization[J].Aero Weaponry, 2021, 28(2):104-112(in Chinese).
[22] 彭美璇. 基于无线电测距的无人系统定位算法研究[D]. 济南:山东大学, 2019. PENG M X. Research on unmanned vehicles location algorithm based on radio ranging[D]. Jinan:Shandong University, 2019(in Chinese).
[23] ZHU D Q, TIAN C, SUN B, et al. Complete coverage path planning of autonomous underwater vehicle based on GBNN algorithm[J].Journal of Intelligent & Robotic Systems, 2019, 94(1):237-249.
文章导航

/