层流机翼可以显著减少飞机的气动阻力,层流机翼的参数选择受到飞机总体参数的影响,同时需要和增升装置开展协同设计。采用前缘克鲁格和后缘富勒襟翼方案,首先对巡航构型的干净翼型和着陆构型的多段翼型开展嵌套协同优化。在此基础上,针对三维层流机翼和增升装置,通过自由转捩RANS计算和基于响应面的高效多级优化相结合的方法,实现了融合增升装置的层流机翼气动设计。
The laminar wing technology can reduce the drag of the aircraft significantly. Selection of laminar wing parameters is affected by the overall parameters of the aircraft. Collaborative design of the laminar wing with its high-lift devices also needs to be carried out. Firstly, the clean airfoil of cruise configuration and the multi-segment airfoil of landing configuration are optimized by using leading-edge Kruger flaps and trailing-edge Fowler flaps. On this basis, the aerodynamic design for the three-dimensional laminar wing and its high-lift devices is realized through combination of RANS calculation of free transition and the efficient multi-level optimization based on the response surface.
[1] CLEMONS L, WLEZIEN R W. Unsteady active flow control on the leading edge of a high-lift configuration thin airfoil[C]//8th AIAA Flow Control Conference. Reston: AIAA, 2016.
[2] WILD J. Recent research topics in high-lift aerodynamics[J]. CEAS Aeronautical Journal, 2016, 7(3): 345-355.
[3] CAMPBELL R L, LYNDE M N. Natural laminar flow design for wings with moderate sweep[C]//34th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2016.
[4] SEITZ A, KRUSE M, WUNDERLICH T, et al. The DLR project LamAiR: Design of a NLF forward swept wing for short and medium range transport application[C]//29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011.
[5] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7): 2579-2593.
[6] DENISON M, PULLIAM T H. Implementation and assessment of the amplification factor transport laminar-turbulent transition model[C]//2018 Fluid Dynamics Conference. Reston: AIAA, 2018.
[7] GAO Z H, HUANG J T. Advanced research on laminar flow aerodynamic configuration optimization for green aircraft[C]//AIAA Aviation 2014 Forum. Reston: AIAA, 2014.
[8] ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43: 152-164.
[9] ZHAO H, GAO Z H, GAO Y. Design optimization of natural-laminar-flow airfoil for complicated flight conditions[C]//35th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2017.
[10] 张启鹏. 超临界自然层流翼型优化方法研究[D]. 南京: 南京航空航天大学, 2018. ZHANG Q P. Optimization methods for supercritical natural laminar airfoils[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
[11] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3): 783-795.
[12] STREIT T S, SEITZ A, HEIN S, et al. NLF potential of laminar transonic long range aircraft[C]//AIAA Aviation 2020 Forum. Reston: AIAA, 2020.
[13] LYNDE M N, CAMPBELL R L, VIKEN S A. Additional findings from the common research model natural laminar flow wind tunnel test[C]//AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
[14] BRIGHT M, KORNTHEUER A, KOMADINA S, et al. Development of advanced high lift leading edge technology for laminar flow wings[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
[15] Boeing Commercial Airplane Group. High Reynolds number hybrid laminar flow control (HLFC) flight experiment II. Aerodynamic design: NASA CR 209324[R].Washington, D.C.: NASA, 1999.
[16] Boeing Commercial Airplane Group. High Reynolds number hybrid laminar flow control (HLFC) flight experiment III. Leading edge design, fabrication, and installation: NASA CR 209325[R].Washington, D.C.: NASA, 1999.
[17] IANNELLI P, Wild J, MINERVINO M, et al. Design of a high-lift system for a laminar wing[C]//5th European Conference for Aeronautics and Space Sciences (Eucass), 2013.
[18] WILD J. Kruger design for an HLFC wing[C]//5th CEAS Air and Space Conference, 2015.
[19] FRANKE D M, WILD J. Aerodynamic design of a folded krüger device for a HLFC wing[C]//New Results in Numerical and Experimental Fluid Mechanics X, 2016: 17-27.
[20] BOSNYAKOV S, KAZHAN E, KURSAKOV I, et al. Aerodynamic performance of the DeSiReH high-lift laminar wing at free flight and ETW in-tunnel conditions[C]//Progress in Flight Physics - Volume 7. Les Ulis: EDP Sciences, 2015: 33-44.
[21] AKAYDIN H D, HOUSMAN J A, KIRIS C C, et al. Computational design of a krueger flap targeting conventional slat aerodynamics[C]//22nd AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2016.
[22] DAM C P V. The aerodynamic design of multi-element high-lift systems for transport airplanes[J]. Progress in Aerospace Sciences, 2002, 38(2): 101-144.
[23] STRUBER H. The aerodynamic design of the A350XWB-900 high-lift system[C]//29th Congress of the International Council of Aeronautical Sciences, 2014.
[24] 李高华, 宋文滨, 张淼, 等. 翼型高低速性能优化及其对缝翼设计影响研究[J]. 飞行力学, 2011, 29(5): 31-34, 43. LI G H, SONG W B, ZHANG M, et al. Concurrent optimization of airfoil high/low performance and its impact on slat design[J]. Flight Dynamics, 2011, 29(5): 31-34, 43 (in Chinese).
[25] BASHA W A, GHALY W S. Drag prediction in transitional flow over airfoils[J]. Journal of Aircraft, 2007, 44(3): 824-832.
[26] FEJTEK I, FEJTEK I. Summary of code validation results for a multiple element airfoil test case[C]//28th Fluid Dynamics Conference. Reston: AIAA, 1997.
[27] POWELL N A, CLEMENS A, VELEZ-VALENCIA A, et al. Gulfstream’s contributions to the third AIAA high lift prediction workshop[C]//2018 Applied Aerodynamics Conference. Reston: AIAA, 2018.
[28] CODER J G, PULLIAM T H, JENSEN J C. Contributions to HiLiftPW-3 using structured, overset grid methods[C]//2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018.
[29] LUO J J, SHI Y J, SONG W B. Finlet optimization for airfoil trailing edge noise minimization using ANN[C]//AIAA Aviation 2020 Forum. Reston: AIAA, 2020.
[30] JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using Kriging model[J]. Journal of Aircraft, 2005, 42(2): 413-420.