综述

激波/边界层干扰及微型涡流发生器控制研究进展

  • 吴瀚 ,
  • 王建宏 ,
  • 黄伟 ,
  • 杜兆波 ,
  • 颜力
展开
  • 国防科技大学 空天科学学院, 长沙 410073

收稿日期: 2021-02-04

  修回日期: 2021-02-22

  网络出版日期: 2021-04-27

基金资助

国家重点研发计划(2019YFA0405300)

Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators

  • WU Han ,
  • WANG Jianhong ,
  • HUANG Wei ,
  • DU Zhaobo ,
  • YAN Li
Expand
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2021-02-04

  Revised date: 2021-02-22

  Online published: 2021-04-27

Supported by

National Key R&D Program of China (2019YFA0405300)

摘要

激波/边界层干扰是一种发生在超声速/高超声速流动中的普遍现象。该现象将引起分离、流场结构振荡、局部高热通量和压力载荷。主要总结了近十年来激波/边界层干扰特性与微型涡流发生器及其组合体在流动控制中的最新进展。微型涡流发生器是目前研究最多、应用最广泛的控制方法,其流动机理和控制特性被大量挖掘。为了适应来流条件的变化、满足实际工况的需要,应开发定量评估和参数化设计方法。同时,应探索微型涡流发生器与其他控制方法的组合,实现更大程度、更广范围流场的控制。

本文引用格式

吴瀚 , 王建宏 , 黄伟 , 杜兆波 , 颜力 . 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报, 2021 , 42(6) : 25371 -025371 . DOI: 10.7527/S1000-6893.2021.25371

Abstract

The shock wave/boundary layer interaction is a common phenomenon that occurs in supersonic/hypersonic flows, causing flow separation, flow field structure oscillation, local high heat flux and pressure load. This article mainly summarizes recent research advances on the shock wave/boundary layer interaction and its control induced by the micro vortex generator in the past decade. The micro vortex generator is currently the most studied and widely used control approach with its flow performance and control mechanism extensively explored. However, to adapt to the changes in incoming flow conditions and meet the needs of actual working conditions, quantitative evaluation and parametric design methods should be developed. Meanwhile, the combination of the micro vortex generator and other control methods should be considered to achieve flow field control with a larger degree and a wider range.

参考文献

[1] FERRI A. Experimental results with airfoils tested in the high-speed tunnel at Guidonia:NACA-TM-946[R]. Washington, D.C.:NACA, 1940.
[2] HUANG W, DU Z B, YAN L, et al. Supersonic mixing in airbreathing propulsion systems for hypersonic flights[J]. Progress in Aerospace Sciences, 2019, 109:100545.
[3] HUANG W, DU Z B, YAN L, et al. Flame propagation and stabilization in dual-mode scramjet combustors:A survey[J]. Progress in Aerospace Sciences, 2018, 101:13-30.
[4] HUANG W, CHEN Z, YAN L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows:A review[J]. Progress in Aerospace Sciences, 2019, 105:31-39.
[5] 陶渊.高超声速进气道中激波边界层干扰现象研究[D]. 长沙:国防科技大学,2018:1-13. TAO Y. The study of the shock wave/boundary layer interactions in hypersonic intet[D]. Changsha:National University of Defense Technology, 2018:1-13(in Chinese).
[6] 毛宏霞, 贾居红, 傅德彬, 等. HIFiRE-1飞行器激波与边界层干扰气动热研究[J]. 兵工学报, 2018, 39(3):528-536. MAO H X, JIA J H, FU D B, et al. Research on aero thermodynamics and influencing factors for HIFiRE-1[J]. Acta Armamentarii, 2018, 39(3):528-536(in Chinese).
[7] ZHU K, JIANG L X, LIU W D, et al. Wall temperature effects on shock wave/turbulent boundary layer interaction via direct numerical simulation[J]. Acta Astronautica, 2021, 178:499-510.
[8] PASQUARIELLO V, GRILLI M, HICKEL S, et al. Large-eddy simulation of passive shock-wave/boundary-layer interaction control[J]. International Journal of Heat and Fluid Flow, 2014, 49:116-127.
[9] TITCHENER N, BABINSKY H. Shock wave/boundary-layer interaction control using a combination of vortex generators and bleed[J]. AIAA Journal, 2013, 51(5):1221-1233.
[10] 王博. 激波/湍流边界层相互作用流场组织结构研究[D]. 长沙:国防科技大学, 2015:75-87. WANG B. The investigation into the shock wave/boundary-layer interaction flow field organization[D]. Changsha:National University of Defense Technology, 2015:75-87(in Chinese).
[11] ZHOU Y Y, ZHAO Y L, ZHAO Y X. A study on the separation length of shock wave/turbulent boundary layer interaction[J]. International Journal of Aerospace Engineering, 2019, 2019:8323787.
[12] VANSTONE L, MUSTA M N, SECKIN S, et al. Experimental study of the mean structure and quasi-conical scaling of a swept-compression-ramp interaction at Mach 2[J]. Journal of Fluid Mechanics, 2018, 841:1-27.
[13] YUE L J, JIA Y N, XU X, et al. Effect of cowl shock on restart characteristics of simple ramp type hypersonic inlets with thin boundary layers[J]. Aerospace Science and Technology, 2018, 74:72-80.
[14] FUNDERBURK M L, NARAYANASWAMY V. Investigation of negative surface curvature effects in axisymmetric shock/boundary-layer interaction[J]. AIAA Journal, 2019, 57(4):1594-1607.
[15] PASHA A A, JUHANY K A. Effect of wall temperature on separation bubble size in laminar hypersonic shock/boundary layer interaction flows[J]. Advances in Mechanical Engineering, 2019, 11(11):1-10.
[16] HUANG R, LI Z F, YANG J M. Engineering prediction of fluctuating pressure over incident shock/turbulent boundary-layer interactions[J]. AIAA Journal, 2019, 57(5):2209-2213.
[17] MEIER G, SZUMOWSKI A P, SELEROWICZ W C. Self-excited oscillations in internal transonic flows[J]. Progress in Aerospace Sciences, 1990, 27(2):145-200.
[18] HADJADJ A, DUSSAUGE J P. Shock wave boundary layer interaction[J]. Shock Waves, 2009, 19(6):449-452.
[19] GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72:80-99.
[20] PRIEBE S, MARTÍN M P. Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699:1-49.
[21] HUANG X, ESTRUCH-SAMPER D. Low-frequency unsteadiness of swept shock-wave/turbulent-boundary-layer interaction[J]. Journal of Fluid Mechanics, 2018, 856:797-821.
[22] PASQUARIELLO V, HICKEL S, ADAMS N A. Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number[J]. Journal of Fluid Mechanics, 2017, 823:617-657.
[23] CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46(1):469-492.
[24] KNIGHT D, MORTAZAVI M. Hypersonic shock wave transitional boundary layer interactions-A review[J]. Acta Astronautica, 2018, 151:296-317.
[25] VYAS M A, YODER D A, GAITONDE D V. Reynolds-stress budgets in an impinging shock-wave/boundary-layer interaction[J]. AIAA Journal, 2019, 57(11):4698-4714.
[26] HAO J A, WEN C Y. Effects of vibrational nonequilibrium on hypersonic shock-wave/laminar boundary-layer interactions[J]. International Communications in Heat and Mass Transfer, 2018, 97:136-142.
[27] 孙东, 刘朋欣, 童福林. 展向振荡对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(12):124054. SUN D, LIU P X, TONG F L. Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):124054(in Chinese).
[28] HARLOFF G J, SMITH G E. Supersonic-inlet boundary-layer bleed flow[J]. AIAA Journal, 1996, 34(4):778-785.
[29] ZHANG B H, ZHAO Y X, LIU J. Effects of bleed hole size on supersonic boundary layer bleed mass flow rate[J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(8):652-662.
[30] SLATER J W. Improvements in modeling 90-degree bleed holes for supersonic inlets[J]. Journal of Propulsion and Power, 2012, 28(4):773-781.
[31] BRUCE P J K, COLLISS S P. Review of research into shock control bumps[J]. Shock Waves, 2015, 25(5):451-471.
[32] ZHANG Y, TAN H J, TIAN F C, et al. Control of incident shock/boundary-layer interaction by a two-dimensional bump[J]. AIAA Journal, 2014, 52(4):767-776.
[33] ZHANG Y, TAN H J, LI J F, et al. Control of cowl-shock/boundary-layer interactions by deformable shape-memory alloy bump[J]. AIAA Journal, 2018, 57(2):696-705.
[34] 邓维鑫, 杨顺华, 张弯洲, 等. 高超声速流动的气体吹除控制方法研究[J]. 推进技术, 2017, 38(4):759-763. DENG W X, YANG S H, ZHANG W Z, et al. Study on air blowing control method for hypersonic flow[J]. Journal of Propulsion Technology, 2017, 38(4):759-763(in Chinese).
[35] CHIDAMBARANATHAN M, VERMA S B, RATHAKRISHNAN E. Control of incident shock-induced boundary-layer separation using steady micro-jet actuators at M=3.5[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(4):1284-1306.
[36] SHARMA V, ESWARAN V, CHAKRABORTY D. Determination of optimal spacing between transverse jets in a SCRAMJET engine[J]. Aerospace Science and Technology, 2020, 96:105520.
[37] VERMA S B, MANISANKAR C. Control of compression-ramp-induced interaction with steady microjets[J]. AIAA Journal, 2019, 57(7):2892-2904.
[38] VERMA S B, MANISANKAR C, AKSHARA P. Control of shock-wave boundary layer interaction using steady micro-jets[J]. Shock Waves, 2015, 25(5):535-543.
[39] LIU Y M, ZHANG H, LIU P C. Flow control in supersonic flow field based on micro jets[J]. Advances in Mechanical Engineering, 2019, 11(1):1-15.
[40] JIANG H, LIU J, LUO S C, et al. Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators[J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(9):745-760.
[41] 苏纬仪, 陈立红, 张新宇. MHD控制激波诱导湍流边界层分离的机理分析[J]. 推进技术, 2010, 31(1):18-23. SU W Y, CHEN L H, ZHANG X Y. Investigation of magnetohydrodynamic control on turbulent boundary layer separation induced by shock wave[J]. Journal of Propulsion Technology, 2010, 31(1):18-23(in Chinese).
[42] ZHANG Y C, TAN H J, HUANG H X, et al. Transient flow patterns of multiple plasma synthetic jets under different ambient pressures[J]. Flow, Turbulence and Combustion, 2018, 101(3):741-757.
[43] NARAYANASWAMY V, RAJA L L, CLEMENS N T. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator[J]. Physics of Fluids, 2012, 24(7):076101.
[44] HUANG H X, TAN H J, SUN S, et al. Letter:Transient interaction between plasma jet and supersonic compression ramp flow[J]. Physics of Fluids, 2018, 30(4):041703.
[45] PEAKE D, HENRY F, PEARCEY H. Viscous flow control with air-jet vortex generators:AIAA-1999-3175[R]. Reston:AIAA, 1999.
[46] 张悦, 谭慧俊, 王子运, 等. 进气道内激波/边界层干扰及控制研究进展[J]. 推进技术, 2020, 41(2):241-259. ZHANG Y, TAN H J, WANG Z Y, et al. Progress of shock wave/boundary layer interaction and its control in inlet[J]. Journal of Propulsion Technology, 2020, 41(2):241-259(in Chinese).
[47] BABINSKY H, LI Y, FORD C W P. Microramp control of supersonic oblique shock-wave/boundary-layer interactions[J]. AIAA Journal, 2009, 47(3):668-675.
[48] FORD C P, BABINSKY H. Micro-ramp control for oblique shock wave/boundary layer interactions:AIAA-2007-4115[R]. Reston:AIAA, 2007.
[49] BLINDE P L, HUMBLE R A, OUDHEUSDEN B W, et al. Effects of micro-ramps on a shock wave/turbulent boundary layer interaction[J]. Shock Waves, 2009, 19(6):507-520.
[50] SHINN A, VANKA S, MANI M R, et al. Application of BCFD unstructured grid solver to simulation of micro-ramp control of shock/boundary layer interactions:AIAA-2007-3914[R]. Reston:AIAA, 2007.
[51] ZHANG Y, TAN H J, DU M C, et al. Control of shock/boundary-layer interaction for hypersonic inlets by highly swept microramps[J]. Journal of Propulsion and Power, 2014, 31(1):133-143.
[52] 张悦, 高婉宁, 程代姝. 基于记忆合金的可变形涡流发生器控制唇罩激波/边界层干扰研究[J]. 推进技术, 2018, 39(12):2755-2763. ZHANG Y, GAO W N, CHENG D S. Control of cowl shock/boundary layer interaction by variable microramps based on shape memory alloy[J]. Journal of Propulsion Technology, 2018, 39(12):2755-2763(in Chinese).
[53] YAN Y H, CHEN C X, WANG X, et al. LES and analyses on the vortex structure behind supersonic MVG with turbulent inflow[J]. Applied Mathematical Modelling, 2014, 38(1):196-211.
[54] KAUSHIK M. Experimental studies on micro-vortex generator controlled shock/boundary-layer interactions in Mach 2.2 intake[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(3):584-595.
[55] VERMA S B, MANISANKAR C. Assessment of various low-profile mechanical vortex generators in controlling a shock-induced separation[J]. AIAA Journal, 2017, 55(7):2228-2240.
[56] WANG B, LIU W D, ZHAO Y X, et al. Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control[J]. Physics of Fluids, 2012, 24(5):055110.
[57] BAGHERI H, MIRJALILY S A A, OLOOMI S A A, et al. Effects of micro-vortex generators on shock wave structure in a low aspect ratio duct, numerical investigation[J]. Acta Astronautica, 2021, 178:616-624.
[58] 赵永胜,张黄伟,张江.动态微涡流发生器对激波/边界层干扰的影响研究[J/OL].推进技术,(2020-12-03)[2021-03-09]. https://doi.org/10.13675/j.cnki.tjjs.200305. ZHAO Y S,ZHANG H W,ZHANG J. Effects of dynamic micro vortex generator on shock wave boundary layer interactions[J/OL]. Journal of Propulsion Technology, (2020-12-03)[2021-03-09]. https://doi.org/10.13675/j.cnki.tjjs.200305(in Chinese).
[59] ESTRUCH-SAMPER D, VANSTONE L, HILLIER R, et al. Micro vortex generator control of axisymmetric high-speed laminar boundary layer separation[J]. Shock Waves, 2015, 25(5):521-533.
[60] MARTIS R R, MISRA A, SINGH A. Effect of microramps on separated swept shock wave-boundary-layer interactions[J]. AIAA Journal, 2014, 52(3):591-603.
[61] GAGEIK M, NIES J, KLIOUTCHNIKOV I, et al. Pressure wave damping in transonic airfoil flow by means of micro vortex generators[J]. Aerospace Science and Technology, 2018, 81:65-77.
[62] KOIKE S, BABINSKY H. Vortex generators for corner separation caused by shock-wave/boundary-layer interactions[J]. Journal of Aircraft, 2018, 56(1):239-249.
[63] GAO L Y, ZHANG H, LIU Y Q, et al. Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines[J]. Renewable Energy, 2015, 76:303-311.
[64] HUANG J B, XIAO Z X, FU S, et al. Study of control effects of vortex generators on a supercritical wing[J]. Science China Technological Sciences, 2010, 53(8):2038-2048.
[65] ZHANG Y J, LIU W D, WANG B, et al. Effects of micro-ramp on transverse jet in supersonic crossflow[J]. Acta Astronautica, 2016, 127:160-170.
文章导航

/