多相流与反应流的机理、模型及其调控技术专栏

双层旋转锥形液膜一次破碎特性数值研究

  • 申力鑫 ,
  • 邢菲 ,
  • 秦腊 ,
  • 苏昊
展开
  • 厦门大学 航空航天学院, 厦门 361000

收稿日期: 2021-01-14

  修回日期: 2021-02-04

  网络出版日期: 2021-03-18

基金资助

国家自然科学基金(12072303)

Numerical study on primary breakup characteristics of dual-layer rotating conical liquid sheets

  • SHEN Lixin ,
  • XING Fei ,
  • QIN La ,
  • SU Hao
Expand
  • School of Aerospace Engineering, Xiamen University, Xiamen 361000, China

Received date: 2021-01-14

  Revised date: 2021-02-04

  Online published: 2021-03-18

Supported by

National Natural Science Foundation of China (12072303)

摘要

为了全面加深对锥形液膜一次破碎机理的认识,对双层锥形液膜的雾化过程进行了数值模拟,重点研究了压降和同轴旋转空气对双层液膜宏观形态、液膜破碎模式、液膜破碎长度和喷雾锥角等液膜一次破碎特性的影响。数值计算的喷雾场宏观形态与试验结果接近,喷雾锥角和索特尔平均直径的计算最大误差分别为4.9%、7.4%。研究表明:同轴旋转空气参与雾化会改变喷雾场的整体形态;增大压降和空气速度会改变液膜的破碎模式和主导表面波模式;双层液膜的合并会在液膜表面产生剧烈的表面波动,同时会略微增大液膜的喷雾锥角;液膜的破碎长度会随着压降和同轴旋转空气轴向速度的增大而减小。该研究有助于进一步研究双层液膜一次破碎的机理,从而指导对双路离心式喷嘴的雾化认识。

本文引用格式

申力鑫 , 邢菲 , 秦腊 , 苏昊 . 双层旋转锥形液膜一次破碎特性数值研究[J]. 航空学报, 2021 , 42(12) : 625267 -625267 . DOI: 10.7527/S1000-6893.2021.25267

Abstract

To comprehensively deepen the understanding of the primary breakup mechanism of conical liquid sheets, this study numerically simulated the atomization process of dual-layer conical liquid sheets, focusing on the effects of pressure drop and coaxial rotating air on the primary breakup characteristics of the liquid sheet such as the macroscopic morphology of the dual-layer liquid sheet, the breakup mode and length of the liquid sheet, and the spray cone angle. The macroscopic morphology of the numerically calculated spray field was close to the experimental results, and the maximum errors of the numerically calculated spray cone angle and the Sauter mean diameter were 4.9% and 7.4%, respectively. The numerical results show that the participation of coaxially rotating air in the atomization will change the overall morphology of the spray field. With the increase of pressure drop and air velocity, the breakup mode and the dominant surface wave mode of the liquid sheet will be changed. The merging of the dual-layer of liquid sheets will produce drastic surface fluctuation on the surface of the liquid sheet, slightly increasing the spray angle. The breakup length of the liquid sheet decreases as the pressure drop and the axial velocity of the coaxially rotating air increase. This research facilitates further studies on the mechanisms of dual-layer liquid sheet primary breakup, thus providing guidance in the understanding of atomization in the double pressure swirl injector.

参考文献

[1] 薛帅杰, 刘红军, 洪流, 等. 厚液膜敞口型离心喷嘴动力学特性试验[J]. 航空学报, 2018, 39(12):122534. XUE S J, LIU H J, HONG L, et al. Experimental on dynamic characteristics of an open-end swirl injector with thick liquid film[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122534(in Chinese).
[2] NADA T R, HASHEM A A. Geometrical characterization and performance optimization of monopropellant thruster injector[J]. The Egyptian Journal of Remote Sensing and Space Science, 2012, 15(2):161-169.
[3] JEDELSKY J, JICHA M. Energy considerations in spraying process of a spill-return pressure-swirl atomizer[J]. Applied Energy, 2014, 132:485-495.
[4] LIU J, ZHANG X Q, LI Q L, et al. Effect of geometric parameters on the spray cone angle in the pressure swirl injector[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(2):342-353.
[5] XUE J, JOG M A, JENG S M, et al. Effect of geometric parameters on simplex atomizer performance[J]. AIAA Journal, 2004, 42(12):2408-2415.
[6] 薛帅杰, 刘红军, 陈鹏飞, 等. 注气离心喷嘴喷注过程稳定性试验[J]. 航空学报, 2019, 40(7):122697. XUE S J, LIU H J, CHEN P F, et al. Test on spray stability of swirl injector with gas injection[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):122697(in Chinese).
[7] 刘娟. 旋转锥形液膜破碎过程实验与仿真研究[D]. 长沙:国防科学技术大学, 2012:79-115. LIU J. Experimental and numerical simulation of the breakup process of swirling conical liquid sheet[D]. Changsha:National University of Defense Technology, 2012:79-115(in Chinese).
[8] KANG Z T, LI Q L, ZHANG J Q, et al. Effects of gas liquid ratio on the atomization characteristics of gas-liquid swirl coaxial injectors[J]. Acta Astronautica, 2018, 146:24-32.
[9] 岳明, 杨茂林. 锥形液膜空间稳定性分析[J]. 航空动力学报, 2003, 18(6):794-798. YUE M, YANG M L. On the spatial instability of a conical sheet[J]. Journal of Aerospace Power, 2003, 18(6):794-798(in Chinese).
[10] FU Q F, YANG L J, QU Y Y, et al. Linear stability analysis of a conical liquid sheet[J]. Journal of Propulsion and Power, 2010, 26(5):955-968.
[11] HOSSEINALIPOUR S M, GHORBANI R, KARIMAEI H. Effect of liquid sheet and gas streams characteristics on the instability of a hollow cone spray using an improved linear instability analysis[J]. Asia-Pacific Journal of Chemical Engineering, 2016, 11(1):24-33.
[12] REDDY R, BANERJEE R. Direct simulations of liquid sheet breakup in planar gas blast atomization[J]. Atomization and Sprays, 2017, 27(2):95-116.
[13] 王凯, 杨国华, 李鹏飞,等. 基于Gerris的离心式喷嘴锥形液膜破碎过程数值模拟[J]. 推进技术, 2018, 39(5):1041-1050. WANG K, YANG G H, LI P F, et al. Numerical simulation on conical liquid sheet breakup process of pressure swirl injector based on gerris[J]. Journal of Propulsion Technology, 2018, 39(5):1041-1050(in Chinese).
[14] 康忠涛. 气液同轴离心式喷嘴非定常雾化机理和燃烧特性研究[D]. 长沙:国防科学技术大学, 2016:81-113. KANG Z T. The unsteady atomization mechanism and combustion characteristics of gas-liquid swirl coaxial injector[D]. Changsha:National University of Defense Technology, 2016:81-113(in Chinese).
[15] 康忠涛, 李清廉, 张新桥,等. 气液同轴双离心式喷嘴喷雾特性[J]. 国防科技大学学报, 2014, 36(5):50-57. KANG Z T, LI Q L, ZHANG X Q, et al. Spray characteristic of gas-liquid double swirl coaxial injector[J]. Journal of National University of Defense Technology, 2014, 36(5):50-57(in Chinese).
[16] 刘赵淼, 郑会龙, 林家源,等. 双路离心式喷嘴液膜形态的实验研究[J]. 北京工业大学学报, 2020, 46(5):431-439. LIU Z M, ZHENG H L, LIN J Y, et al. Experimental study on liquid film morphology of the dual-orifice swirl nozzle[J]. Journal of Beijing University of Technology, 2020, 46(5):431-439(in Chinese).
[17] POPINET S. Gerris:A tree-based adaptive solver for the incompressible Euler equations in complex geometries[J]. Journal of Computational Physics, 2003, 190(2):572-600.
[18] POPINET S. An accurate adaptive solver for surface-tension-driven interfacial flows[J]. Journal of Computational Physics, 2009, 228(16):5838-5866.
[19] BELL J B, COLELLA P, GLAZ H M. A second-order projection method for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 1989, 85(2):257-283.
[20] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5):562-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5):562-589(in Chinese).
[21] CHEN X D, MA D J, YANG V, et al. High-fidelity simulations of impinging jet atomization[J]. Atomization and Sprays, 2013, 23(12):1079-1101.
[22] FRASER R P. Liquid fuel atomization[J]. Symposium (International) on Combustion, 1957, 6(1):687-701.
[23] DOMBROWSKI N, HASSON D. The flow characteristics of swirl (centrifugal) spray pressure nozzles with low viscosity liquids[J]. AIChE Journal, 2010, 15(4):604-611.
[24] LI X G, TANKIN R S. On the temporal instability of a two-dimensional viscous liquid sheet[J]. Journal of Fluid Mechanics, 1991, 226:425-443.
[25] IBRAHIM E A. Spatial instability of a viscous liquid sheet[J]. Journal of Propulsion and Power, 1995, 11(1):146-152.
[26] LIAO Y, JENG S M, JOG M A, et al. Instability of an annular liquid sheet surrounded by swirling airstreams[J]. AIAA Journal, 2000, 38(3):453-460.
[27] IBRAHIM A. Comprehensive study of internal flow field and linear and nonlinear instability of an annular liquid sheet emanating from an atomizer[D]. Cincinnati:University of Cincinnati, 2006:144-197.
文章导航

/