新型飞行器对气动特性的预示精准度提出了更高的要求,为此研究了一种适用于多条飞行试验数据的气动特性修正框架,实现了对地面气动模型及先验不确定性模型的修正。基于试验数据特点,首先从模型辨识角度,改进了传统的多元正交函数法,构建了多试验数据模型项的统计优选准则,设计了基于总体最小二乘思想的定制化参数估计算法;然后从不确定度量化角度,估计出了气动修正模型的总偏差,校验了先验不确定性模型。最后应用提出的修正框架处理某飞行器的10条试验数据。结果表明相比于原始地面气动特性预示方式,修正后的方式,一方面预测的气动系数更接近测量的气动系数,另一方面估计的气动误差带具有较少的误差带外测量点及最高的精细程度。
The novel aircraft has higher requirements for prediction accuracy of aerodynamic characteristics. Therefore, this paper studies an aerodynamic characteristics correction framework for multiple flight test data to achieve correction of ground aerodynamic model and prior uncertainty model. Firstly, to improve the accuracy of model identification, the traditional multivariate orthogonal function method is improved based on the characteristics of experimental data. Statistical selection criteria for multi-test data model items are constructed, and the customized parameter estimation algorithm is designed based on the total least square method. Then, for the purpose of uncertainty quantification, the total deviation of the aerodynamic correction model is estimated, and the prior uncertainty model is corrected. Finally, the proposed correction framework is used to process 10 test data of a certain aircraft. The results show that compared with the original ground aerodynamic characteristics prediction method, the revised method can yield more accurate prediction of aerodynamic coefficients, and fewer out-of-band measurement points and higher accuracy in estimation of aerodynamic error bands.
[1] 朱广生. 再入机动飞行器气动设计与实践[M]. 北京:中国宇航出版社, 2017. ZHU G S. Aerodynamic design and practice of reentry maneuvering vehicle[M]. Beijing:China Aerospace Press, 2017(in Chinese).
[2] 余平, 段毅, 尘军. 高超声速飞行的若干气动问题[J]. 航空学报, 2015, 36(1):7-23. YU P, DUAN Y, CHEN J. Some aerodynamic issues in hypersonic flight[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):7-23(in Chinese).
[3] ROY C J, OBERKAMPF W L. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(25-28):2131-2144.
[4] 曾晓彬, 彭钧, 乐川. 一种飞行器投放分离气动力辨识修正方法[J]. 航空学报, 2016, 37(S1):S24-S31. ZENG X B, PENG J, YUE C. An aerodynamic identification and correction method for vehicle in release separation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):S24-S31(in Chinese).
[5] YAVUZTURK V N, TOPBAS E, YAZICIOGLU Y. Flight test maneuver design and aerodynamic parameter estimation for single use autonomous gliding air vehicles[C]//AIAA Atmospheric Flight Mechanics Conference, 2017.
[6] TOL H J, DEVISSER C C, KAMPEN E V, et al. Nonlinear multivariate spline-based control allocation for high-performance aircraft[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):1840-1862.
[7] KUTLUARY U. Aerodynamic parameter estimation using flight test data[D]. Ankara:Middle East Technical University, 2011:27-37.
[8] MORELLI E. Efficient global aerodynamic modeling from flight data[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012.
[9] GARCIA A R, VOS R, DE VISSER C. Aerodynamic model identification of the flying V from wind tunnel data[C]//AIAA Aviation 2020 Forum. Reston:AIAA, 2020.
[10] GRAUER J A, MORELLI E A. Generic global aerodynamic model for aircraft[J]. Journal of Aircraft, 2015, 52(1):13-20.
[11] HALE L E, PATIL M, ROY C J. Aerodynamic parameter identification and uncertainty quantification for small unmanned aircraft[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(3):680-691.
[12] GRAUER J A. Real-time data-compatibility analysis using output-error parameter estimation[J]. Journal of Aircraft, 2015, 52(3):940-947.
[13] GUPTA N K, HALL W E. System identification technology for estimating Re-entry vehicle aerodynamic coefficients[J]. Journal of Guidance, Control, and Dyamics, 1979, 2(2):139-146.
[14] KARLGAARD C D, TARTABINI P V, BLANCHARD R C, et al. Hyper-X post-flight trajectory reconstruction[J]. Journal of Spacecraft and Rockets, 2006, 43(1):105-115.
[15] MORELLI E. Practical aspects of the equation-error method for aircraft parameter estimation[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston:AIAA, 2006.
[16] VAIOPOULOS P, ZOGOPOULOS-PAPALIAKOS G, KYRIAKOPOULOS K J. Online aerodynamic model identification on small fixed-wing UAVs with uncertain flight data[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway:IEEE, 2018:6587-6592.
[17] VAN HUFFEL S, VANDEWALLE J. The total least squares problem[M]. Philadelphia:Society for Industrial and Applied Mathematics, 1991.
[18] SCHUERMANS M, MARKOVSKY I, WENTZELL P D, et al. On the equivalence between total least squares and maximum likelihood PCA[J]. Analytica Chimica Acta, 2005, 544(1-2):254-267.
[19] HALE L E. Aerodynamic uncertainty quantification and estimation of uncertainty quantified performance of unmanned aircraft using non-deterministic simulations[D]. Blacksburg:Virginia Tech, 2017:37-49.
[20] BRUNE A J, WEST T K IV, HOSDER S IV. Uncertainty quantification of planetary entry technologies[J]. Progress in Aerospace Sciences, 2019, 111:100574.
[21] MORELLI E, WARD D. Automated simulation updates based on flight data[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston:AIAA, 2007.