The large aperture radio telescope is vulnerable to exogenous disturbances such as gusts,systemic uncertainties, and difficulty in achieving high pointing accuracy. To realize the high-performance objective of the telescope control system, the method based on loop shaping and Disturbance/Uncertainty Estimation and Attenuation (DUEA) is proposed. First, a main controller for the nominal model is designed by the approach of mixed sensitivity H∞ to realize the optimal tracking to the input signal. Second, based on the idea of Equivalent Input Disturbance (EID), the external disturbances and systemic uncertainties affecting the system output are equivalently observed and compensated using a Generalized Extended State Observer (GESO). Finally, it is verified by simulation experiments that in the presence of parameter uncertainties as well as input disturbance in the system, the dispersion of system performance indexes using the proposed H∞-GESO controller is 66.7% and below than that only using the mixed sensitivity H∞ controller, and the antenna control performance is significantly improved.
[1] 王娜. 新疆奇台110米射电望远镜[J].中国科学:物理学力学天文学, 2014, 44(8):783-794. WANG N. Xinjiang Qitai 110 m radio telescope[J].Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(8):783-794(in Chinese).
[2] 付丽, 王宇飞, 钱宏亮. 平均风作用对天马望远镜面形精度和指向精度的影响[J].天文学进展, 2019, 37(2):187-202. FU L, WANG Y F, QIAN H L. The effect of mean wind power on antenna surface accuracy and pointing accuracy of the Tian Ma telescope[J].Progress in Astronomy, 2019, 37(2):187-202(in Chinese).
[3] 付丽, 董健, 凌权宝, 等. 天马望远镜结构重力变形对面形和指向精度影响[J].电波科学学报, 2017, 32(3):314-322. FU L, DONG J, LING Q B, et al. Effect of gravity deformation of TianMa telescope structure on the surface and pointing accuracy[J].Chinese Journal of Radio Science, 2017, 32(3):314-322(in Chinese).
[4] ZHANG J, HUANG J, ZHAO P B, et al. Antenna control systems for flexible structure under a wind load[J].Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2019, 233(9):3050-3059.
[5] 李媛媛, 王聪, 高晶波. 抛物面天线柔性对焦点动特性的影响分析[J].哈尔滨工业大学学报, 2017, 49(2):139-144. LI Y Y, WANG C, GAO J B. Effect of paraboloid antenna flexibility on geometric focus dynamic response[J].Journal of Harbin Institute of Technology, 2017, 49(2):139-144(in Chinese).
[6] 李响. 斜齿行星轮系非线性因素对机械臂与天线机构动力学影响分析[D]. 哈尔滨:哈尔滨工业大学, 2018. LI X. Analysis of the dynamic influence of the nonlinear factors of helical planetary gear train on manipulator and antenna mechanisms[D]. Harbin:Harbin Institute of Technology, 2018(in Chinese).
[7] 许谦, 侯晓拯, 王娜. 大口径天线非线性特性动态补偿方法研究[J].中国科学:物理学力学天文学, 2019, 49(9):33-40. XU Q, HOU X Z, WANG N. Research on dynamic compensation method for nonlinear characteristics of large aperture antenna[J].Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(9):33-40(in Chinese).
[8] 刘飞. 反射面天线热变形分析与补偿研究[D]. 西安:西安电子科技大学, 2014:9-16. LIU F. Analysis of thermal deformation of reflector antenna and its compensation[D]. Xi'an:Xidian University, 2014:9-16(in Chinese).
[9] 万其, 邵兵, 胡芳芳. 雷达伺服系统中非线性控制技术研究[J].现代雷达, 2010, 32(8):70-73. WAN Q, SHAO B, HU F F. A study on non-linear control technology in radar servo systems[J].Modern Radar, 2010, 32(8):70-73(in Chinese).
[10] 官伯林. 一种雷达伺服系统的复合控制策略[J].科技视界, 2016(12):3-5. GUAN B L. The compound control strategy of radar servo system[J].Science & Technology Vision, 2016(12):3-5(in Chinese).
[11] 谭元飞, 王静. LQG在大型天线伺服控制中的应用[J].测控与通信, 2015(2):27-30. TAN Y F,WANG J. Application of LQG controller's in large antenna serve-control[J]. Measurement,Control and Communication,2015(2):27-30(in Chinese).
[12] 李鹏, 保宏, 尉胜腾, 等. 110 m大射电望远镜的两自由度复合控制器设计[J].中国科学:物理学力学天文学, 2017, 47(5):97-104. LI P, BAO H, WEI S T, et al. The design of two degree of freedom compound controller for 110 m radio telescope[J].Scientia Sinica (Physica, Mechanica & Astronomica), 2017, 47(5):97-104(in Chinese).
[13] MEDRANO-CERDA G A, LETT R D, REES P. H-infinity motion control system for a 2-m telescope[C]//Astronomical Telescopes and Instrumentation. Proc SPIE 4836, Survey and Other Telescope Technologies and Discoveries, 2002:88-97.
[14] GAWRONSKI W. Antenna control systems:From PI to H∞[J].IEEE Antennas and Propagation Magazine, 2001, 43(1):52-60.
[15] Garciasanz M. Robust control engineering:Practical QFT solutions[M]. Los Angeles:CRC Press, 2017:365-394.
[16] 李宁, 刘志勇, 王娜, 等. 高精度天线指向控制算法的研究[J].天文研究与技术, 2017, 14(4):414-420. LI N, LIU Z Y, WANG N, et al. Research of control algorithm for antenna high pointing accuracy[J].Astronomical Research & Technology, 2017, 14(4):414-420(in Chinese).
[17] 孙明玮, 邱德敏, 王永坤, 等. 大口径深空探测天线的抗风干扰伺服系统[J].光学精密工程, 2013, 21(6):1568-1575. SUN M W, QIU D M, WANG Y K, et al. Wind disturbance rejection servo system for large deep space observatory antenna[J].Optics and Precision Engineering, 2013, 21(6):1568-1575(in Chinese).
[18] LI N, LIU Z Y, YANG L, et al. On servo control of radio telescope:Design and analysis with parametric uncertainties[C]//2019 Chinese Automation Congress (CAC). Piscataway:IEEE Press, 2019:506-511.
[19] 郭绪猛. 大惯量天线伺服跟踪复合控制技术[J].电机与控制应用, 2020, 47(8):52-56, 74. GUO X M. Servo tracking technology based on compound control of large inertia antenna[J].Electric Machines & Control Application, 2020, 47(8):52-56, 74(in Chinese).
[20] 刘康志, 姚郁. 线性鲁棒控制[M]. 北京:科学出版社, 2013. LIU K Z, YAO Y. Linear robust control[M]. Beijing:Science Press, 2013(in Chinese).
[21] 董毅. 基于扰动估计和补偿的导弹鲁棒姿态控制方法研究[D]. 长沙:国防科技大学, 2015:23-43. DONG Y. A robust approach for missile attitude control based on disturbance estimation and compensation[D]. Changsha:National University of Defense Technology, 2015:23-43(in Chinese).
[22] CAI W J, WU M, CHEN X, et al. Robust control based on generalized extended state observer for nonlinear systems[C]//201635th Chinese Control Conference (CCC). Piscataway:IEEE Press, 2016:859-864.