电子电气工程与控制

基于DUEA的天线伺服控制系统仿真

  • 李宁 ,
  • 刘志勇 ,
  • 王娜 ,
  • 杨垒
展开
  • 1. 中国科学院 新疆天文台, 乌鲁木齐 830011;
    2. 中国科学院大学 天文与空间科学学院, 北京 100083

收稿日期: 2020-11-26

  修回日期: 2020-12-29

  网络出版日期: 2021-04-27

基金资助

中国科学院天文台站设备更新及重大仪器设备运行专项经费

Simulation on antenna servo control system based on DUEA

  • LI Ning ,
  • LIU Zhiyong ,
  • WANG Na ,
  • YANG Lei
Expand
  • 1. Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China;
    2. School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100083, China

Received date: 2020-11-26

  Revised date: 2020-12-29

  Online published: 2021-04-27

Supported by

The Operation, Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments, budgeted from the Ministry of Finance of China (MOF) and administrated by the Chinese Academy of Sciences (CAS)

摘要

大口径射电望远镜天线易受到外部阵风等扰动、系统不确定及难以实现高指向精度的问题,为实现系统的高性能指标,提出了基于回路成形和扰动/不确定观测补偿(DUEA)的思想的方法。首先,使用混合灵敏度H设计方法对标称模型设计主控制器来实现对输入信号的最优跟踪;然后,针对影响系统输出的外部扰动以及系统不确定部分,基于等效输入扰动(EID)策略,使用广义扩张状态观测器(GESO)对其进行等效观测和补偿。仿真验证结果表明:在系统存在参数不确定以及输入扰动时,使用提出的H-GESO控制器的性能指标分散度为单独使用混合灵敏度H控制器的指标分散度的66.7%及以下,天线控制性能得到了明显提升。

本文引用格式

李宁 , 刘志勇 , 王娜 , 杨垒 . 基于DUEA的天线伺服控制系统仿真[J]. 航空学报, 2022 , 43(2) : 324986 -324986 . DOI: 10.7527/S1000-6893.2021.24986

Abstract

The large aperture radio telescope is vulnerable to exogenous disturbances such as gusts,systemic uncertainties, and difficulty in achieving high pointing accuracy. To realize the high-performance objective of the telescope control system, the method based on loop shaping and Disturbance/Uncertainty Estimation and Attenuation (DUEA) is proposed. First, a main controller for the nominal model is designed by the approach of mixed sensitivity H to realize the optimal tracking to the input signal. Second, based on the idea of Equivalent Input Disturbance (EID), the external disturbances and systemic uncertainties affecting the system output are equivalently observed and compensated using a Generalized Extended State Observer (GESO). Finally, it is verified by simulation experiments that in the presence of parameter uncertainties as well as input disturbance in the system, the dispersion of system performance indexes using the proposed H-GESO controller is 66.7% and below than that only using the mixed sensitivity H controller, and the antenna control performance is significantly improved.

参考文献

[1] 王娜. 新疆奇台110米射电望远镜[J].中国科学:物理学力学天文学, 2014, 44(8):783-794. WANG N. Xinjiang Qitai 110 m radio telescope[J].Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(8):783-794(in Chinese).
[2] 付丽, 王宇飞, 钱宏亮. 平均风作用对天马望远镜面形精度和指向精度的影响[J].天文学进展, 2019, 37(2):187-202. FU L, WANG Y F, QIAN H L. The effect of mean wind power on antenna surface accuracy and pointing accuracy of the Tian Ma telescope[J].Progress in Astronomy, 2019, 37(2):187-202(in Chinese).
[3] 付丽, 董健, 凌权宝, 等. 天马望远镜结构重力变形对面形和指向精度影响[J].电波科学学报, 2017, 32(3):314-322. FU L, DONG J, LING Q B, et al. Effect of gravity deformation of TianMa telescope structure on the surface and pointing accuracy[J].Chinese Journal of Radio Science, 2017, 32(3):314-322(in Chinese).
[4] ZHANG J, HUANG J, ZHAO P B, et al. Antenna control systems for flexible structure under a wind load[J].Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2019, 233(9):3050-3059.
[5] 李媛媛, 王聪, 高晶波. 抛物面天线柔性对焦点动特性的影响分析[J].哈尔滨工业大学学报, 2017, 49(2):139-144. LI Y Y, WANG C, GAO J B. Effect of paraboloid antenna flexibility on geometric focus dynamic response[J].Journal of Harbin Institute of Technology, 2017, 49(2):139-144(in Chinese).
[6] 李响. 斜齿行星轮系非线性因素对机械臂与天线机构动力学影响分析[D]. 哈尔滨:哈尔滨工业大学, 2018. LI X. Analysis of the dynamic influence of the nonlinear factors of helical planetary gear train on manipulator and antenna mechanisms[D]. Harbin:Harbin Institute of Technology, 2018(in Chinese).
[7] 许谦, 侯晓拯, 王娜. 大口径天线非线性特性动态补偿方法研究[J].中国科学:物理学力学天文学, 2019, 49(9):33-40. XU Q, HOU X Z, WANG N. Research on dynamic compensation method for nonlinear characteristics of large aperture antenna[J].Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(9):33-40(in Chinese).
[8] 刘飞. 反射面天线热变形分析与补偿研究[D]. 西安:西安电子科技大学, 2014:9-16. LIU F. Analysis of thermal deformation of reflector antenna and its compensation[D]. Xi'an:Xidian University, 2014:9-16(in Chinese).
[9] 万其, 邵兵, 胡芳芳. 雷达伺服系统中非线性控制技术研究[J].现代雷达, 2010, 32(8):70-73. WAN Q, SHAO B, HU F F. A study on non-linear control technology in radar servo systems[J].Modern Radar, 2010, 32(8):70-73(in Chinese).
[10] 官伯林. 一种雷达伺服系统的复合控制策略[J].科技视界, 2016(12):3-5. GUAN B L. The compound control strategy of radar servo system[J].Science & Technology Vision, 2016(12):3-5(in Chinese).
[11] 谭元飞, 王静. LQG在大型天线伺服控制中的应用[J].测控与通信, 2015(2):27-30. TAN Y F,WANG J. Application of LQG controller's in large antenna serve-control[J]. Measurement,Control and Communication,2015(2):27-30(in Chinese).
[12] 李鹏, 保宏, 尉胜腾, 等. 110 m大射电望远镜的两自由度复合控制器设计[J].中国科学:物理学力学天文学, 2017, 47(5):97-104. LI P, BAO H, WEI S T, et al. The design of two degree of freedom compound controller for 110 m radio telescope[J].Scientia Sinica (Physica, Mechanica & Astronomica), 2017, 47(5):97-104(in Chinese).
[13] MEDRANO-CERDA G A, LETT R D, REES P. H-infinity motion control system for a 2-m telescope[C]//Astronomical Telescopes and Instrumentation. Proc SPIE 4836, Survey and Other Telescope Technologies and Discoveries, 2002:88-97.
[14] GAWRONSKI W. Antenna control systems:From PI to H[J].IEEE Antennas and Propagation Magazine, 2001, 43(1):52-60.
[15] Garciasanz M. Robust control engineering:Practical QFT solutions[M]. Los Angeles:CRC Press, 2017:365-394.
[16] 李宁, 刘志勇, 王娜, 等. 高精度天线指向控制算法的研究[J].天文研究与技术, 2017, 14(4):414-420. LI N, LIU Z Y, WANG N, et al. Research of control algorithm for antenna high pointing accuracy[J].Astronomical Research & Technology, 2017, 14(4):414-420(in Chinese).
[17] 孙明玮, 邱德敏, 王永坤, 等. 大口径深空探测天线的抗风干扰伺服系统[J].光学精密工程, 2013, 21(6):1568-1575. SUN M W, QIU D M, WANG Y K, et al. Wind disturbance rejection servo system for large deep space observatory antenna[J].Optics and Precision Engineering, 2013, 21(6):1568-1575(in Chinese).
[18] LI N, LIU Z Y, YANG L, et al. On servo control of radio telescope:Design and analysis with parametric uncertainties[C]//2019 Chinese Automation Congress (CAC). Piscataway:IEEE Press, 2019:506-511.
[19] 郭绪猛. 大惯量天线伺服跟踪复合控制技术[J].电机与控制应用, 2020, 47(8):52-56, 74. GUO X M. Servo tracking technology based on compound control of large inertia antenna[J].Electric Machines & Control Application, 2020, 47(8):52-56, 74(in Chinese).
[20] 刘康志, 姚郁. 线性鲁棒控制[M]. 北京:科学出版社, 2013. LIU K Z, YAO Y. Linear robust control[M]. Beijing:Science Press, 2013(in Chinese).
[21] 董毅. 基于扰动估计和补偿的导弹鲁棒姿态控制方法研究[D]. 长沙:国防科技大学, 2015:23-43. DONG Y. A robust approach for missile attitude control based on disturbance estimation and compensation[D]. Changsha:National University of Defense Technology, 2015:23-43(in Chinese).
[22] CAI W J, WU M, CHEN X, et al. Robust control based on generalized extended state observer for nonlinear systems[C]//201635th Chinese Control Conference (CCC). Piscataway:IEEE Press, 2016:859-864.
文章导航

/