[1] TOTOKI H, OCHI Y, SATO M, et al. Design and testing of a low-order flight control system for Quad-Tilt-Wing UAV[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10): 2426-2433.
[2] TRAN A T, SAKAMOTO N, SATO M, et al. Control augmentation system design for quad-tilt-wing unmanned aerial vehicle via robust output regulation method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 357-369.
[3] 钱辰, 方勇纯, 李友朋. 面向扑翼飞行控制的建模与奇异摄动分析[J/OL].自动化学报:1-10 (2020-08-30) [2020-11-20]. https://doi.org/10. 16383 /j.aas.c190858.
QIAN C, FANG Y C, LI Y P. Control oriented modeling and singular perturbation analysis in flapping-wing flight[J/OL]. Acta Automatica Sinica, 2020: 1-10 (2020-08-30) [2020-11-20]. https://doi.org/10.16383/ j.aas.c190858.
[4] 李斌斌, 马磊, 孙小通, 等. 一种多旋翼飞行器的设计及实验验证[J]. 机器人, 2020, 42(03): 257-266.
LI B B, MA L, SUN X T, et al. Design and experimental verification of a multirotor aircraft[J]. ROBOT, 2020, 42(3): 257-266 (in Chinese).
[5] 卢凯文, 杨忠, 张秋雁, 等. 推力矢量可倾转四旋翼自抗扰飞行控制方法[J]. 控制理论与应用, 2020, 37(06):1377-1387.
LU K W, YANG Z, ZHANG Q Y, et al. Active disturbance rejection flight control method for thrust-vectored quadrotor with tiltable rotors[J]. Control Theory & Applications, 2020, 37(06): 1377-1387 (in Chinese).
[6] RITZ R, DANDREA R. A global strategy for tailsitter hover control. Robotics Research[J]. Springer, Cham, 2018: 21-37.
[7] 唐伟, 宋笔锋, 曹煜, 等. 微小型电动垂直起降无人机总体设计方法及特殊参数影响[J]. 航空学报, 2017, 38(10): 120-133.
TANG W, SONG B F, CAO Y, et al. Preliminary design method for miniature electric-powered vertical take-off and landing unmanned airial vehicle and effects of special parameters[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 120-133 (in Chinese).
[8] TIAN B, LU H, ZUO Z, et al. Multivariable uniform finite-time output feedback reentry attitude control for RLV with mismatched disturbance[J]. Journal of the Franklin Institute, 2018, 355(8): 3470-3487.
[9] FANG X, WU A, SHANG Y, et al. A novel sliding mode controller for small-scale unmanned helicopters with mismatched disturbance[J]. Nonlinear Dynamics, 2016, 83(1-2): 1053-1068.
[10] KUN Y A N, MOU C, QINGXIAN W U, et al. Robust adaptive compensation control for unmanned autonomous helicopter with input saturation and actuator faults[J]. Chinese Journal of Aeronautics, 2019, 32(10): 2299-2310.
[11] JIA Z, YU J, MEI Y, et al. Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances[J]. Aerospace Science and Technology, 2017, 68: 299-307.
[12] KURKCU B, KASNAKOGLU C, EFE M ?. Disturbance/uncertainty estimator based integral sliding-mode control[J]. IEEE Transactions on Automatic Control, 2018, 63(11): 3940-3947.
[13] GUO B, CHEN Y. Adaptive fault tolerant control for time-varying delay system with actuator fault and mismatched disturbance[J]. ISA transactions, 2019, 89: 122-130.
[14] ZHANG J, LIU X, XIA Y, et al. Disturbance observer-based integral sliding-mode control for systems with mismatched disturbances[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7040-7048.
[15] YANG J, LI S, YU X. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer[J]. IEEE Transactions on industrial electronics, 2012, 60(1): 160-169.
[16] ASTOLFI A, ORTEGA R. Immersion and invariance: A new tool for stabilization and adaptive control of nonlinear systems[J]. IEEE Transactions on Automatic control, 2003, 48(4): 590-606.
[17] HU J, ZHANG H. Immersion and invariance based command-filtered adaptive backstepping control of VTOL vehicles[J]. Automatica, 2013, 49(7): 2160-2167.
[18] ZOU Y, MENG Z. Immersion and invariance-based adaptive controller for quadrotor systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018 (99): 1-10.
[19] LEE K W, SINGH S N. Quaternion-based adaptive attitude control of asteroid-orbiting spacecraft via immersion and invariance[J]. Acta Astronautica, 2020, 167: 164-180.
[20] KARAGIANNIS D, SASSANO M, ASTOLFI A. Dynamic scaling and observer design with application to adaptive control[J]. Automatica, 2009, 45(12): 2883-2889.
[21] ZHANG B, CAI Y. Immersion and invariance based adaptive backstepping control for body-fixed hovering over an asteroid[J]. IEEE Access, 2019, 7: 34850-34861.
[22] YANG S, AKELLA M R, MAZENC F, Immersion and invariance observers for gyro-free attitude control systems[J]. Journal of Guidance, Control, and Dynamics, 2016: 2570-2577.
[23] DANG Q , GUI H , XU M , et al. Dual-quaternion immersion and invariance velocity observer for controlling asteroid-hovering spacecraft[J]. Acta Astronautica, 2019, 161(AUG.):304-312.
[24] BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099.
[25] BECHLIOULIS C P, ROVITHAKIS G A. Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems[J]. Automatica, 2009, 45(2): 532-538.
[26] SHAO X, HU Q, SHI Y, et al. Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation[J]. IEEE Transactions on Control Systems Technology, 2018.
[27] LUO H, XU H, LIU X. Immersion and invariance based robust adaptive control of high‐speed train with guaranteed prescribed performance bounds[J]. Asian Journal of Control, 2015, 17(6): 2263-2276.
[28] ZHU Y, QIAO J, GUO L. Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing[J]. IEEE Transactions on Industrial Electronics, 2018, 66(3): 1973-1983.
[29] HUA C, CHEN J, GUAN X. Adaptive prescribed performance control of QUAVs with unknown time-varying payload and wind gust disturbance[J]. Journal of the Franklin Institute, 2018, 355(14): 6323-6338.
[30] LIU Y, LIU X, JING Y. Adaptive neural networks finite-time tracking control for non-strict feedback systems via prescribed performance[J]. Information Sciences, 2018, 468: 29-46.
[31] 李小华, 胡利耀. 一类p规范型非线性系统预设性能有限时间H_∞跟踪控制[J/OL].自动化学报:1-11 (2020-11-11) [2020-11-20].https://doi.org/10.16383/j.aa s.c190116.
LI X H, HU Y L. Prescribed performance finite-time H_∞ tracking control for a class of p-normal form nonlinear systems[J/OL]. Acta Automatica Sinica, 1-11 (2020-11-11) [2020-11-20].https://doi.org/10.16383/j.aa s.c190116.
[32] HE S, LI X. Decentralized adaptive prescribed performance finite-time tracking control for a class of nonlinear interconnected systems with unknown control directions[J]. International Journal of Control, 2020: 1-24.
[33] LIU N, SHAO X, LI J, et al. Attitude restricted back-stepping anti-disturbance control for vision based quadrotors with visibility constraint[J]. ISA transactions, 2020, 100: 109-125.
[34] YUAN Y, WANG Z, GUO L, et al. Barrier Lyapunov functions-based adaptive fault tolerant control for flexible hypersonic flight vehicles with full state constraints[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018: 1-10.
[35] XU B, SHI Z, SUN F, et al. Barrier Lyapunov function based learning control of hypersonic flight vehicle with AOA constraint and actuator faults[J]. IEEE transactions on cybernetics, 2018, 49(3): 1047-1057.
[36] LIU Y J, LU S, TONG S, et al. Adaptive control-based barrier Lyapunov functions for a class of stochastic nonlinear systems with full state constraints[J]. Automatica, 2018, 87: 83-93.
[37] HU Q, SHAO X, GUO L. Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance[J]. IEEE/ASME Transactions on Mechatronics, 2017, 23(1): 331-341.
[38] 冯振欣, 郭建国, 周军. 高超声速飞行器新型预设性能控制器设计[J]. 宇航学报, 2018, 39(06): 656-663.
FENG Z X, GUO J G, ZHOU J. Novel prescribed performance controller design for a hypersonic vehicle[J]. Journal of Astronautics, 2018, 39(06): 656-663 (in Chinese).
[39] 马广富, 朱庆华, 王鹏宇, 等. 基于终端滑模的航天器自适应预设性能姿态跟踪控制[J]. 航空学报, 2018, 39(06): 141-151.
MA G F, ZHU Q H, WANG P YU, et al. Adaptive prescribed performance attitude tracking control for spacecraft via terminal sliding-mode technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(06): 141-151 (in Chinese).
[40] HU Q , JIANG B , ZHANG Y . Observer-based output feedback attitude stabilization for spacecraft with finite-time convergence[J]. IEEE Transactions on Control Systems Technology, 2019, 27(2):781-789.