非匹配扰动下变体无人机预设性能控制

  • 李新凯 ,
  • 张宏立 ,
  • 范文慧
展开
  • 1. 新疆大学电气工程学院
    2. 清华大学

收稿日期: 2020-11-26

  修回日期: 2021-03-03

  网络出版日期: 2021-04-27

基金资助

国家自然科学基金;国家自然科学基金;国家自然科学基金

Prescribed performance control for morphing aerospace vehicle under mismatched disturbances

  • LI Xin-Kai ,
  • ZHANG Hong-Li ,
  • FAN Wen-Hui
Expand

Received date: 2020-11-26

  Revised date: 2021-03-03

  Online published: 2021-04-27

摘要

针对半倾转旋翼变体无人机易受到非匹配扰动和受制于性能约束的问题,提出一种基于复合浸入与不变(Immersion and invariance, I&I)理论的非匹配/匹配扰动观测器和有限时间预设性能控制策略。首先,建立了含有复合扰动的变体无人机数学模型;其次,引入有限时间动态尺度技术和监督因子的概念,提出了一种复合I&I的扰动观测器对非匹配/匹配扰动进行估计和补偿;最后,以动态滑模面为性能约束对象构建了新型的有限时间性能函数,并与障碍Lyapunov函数相结合来表征系统的稳态和瞬态性能。理论和仿真算例验证了所提方法的有效性和优越性。

本文引用格式

李新凯 , 张宏立 , 范文慧 . 非匹配扰动下变体无人机预设性能控制[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2021.25008

Abstract

For a semi-tilt-rotor morphing aerospace vehicle susceptible to mismatched disturbances and constrained by performance constraints, a composite immersion and invariant (I&I) mismatched/matched disturbance observer and finite-time prescribed performance control strategy is proposed. Firstly, a mathematical model with composite disturbances is established for the morphing aerospace vehicle. Then, a composite I&I disturbance observer is designed to estimate and compensate mismatched/matched disturbances by introducing the finite-time dynamic scaling technique and supervision factor. Finally, a novel finite-time performance function is constructed with the dynamic sliding mode surface as the performance constraint object and combined with the barrier Lyapunov function to characterize the steady-state and transient performance of the system. The effectiveness and superiority of the proposed method are verified by theoretical and simulation results.

参考文献

[1] TOTOKI H, OCHI Y, SATO M, et al. Design and testing of a low-order flight control system for Quad-Tilt-Wing UAV[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10): 2426-2433.
[2] TRAN A T, SAKAMOTO N, SATO M, et al. Control augmentation system design for quad-tilt-wing unmanned aerial vehicle via robust output regulation method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 357-369.
[3] 钱辰, 方勇纯, 李友朋. 面向扑翼飞行控制的建模与奇异摄动分析[J/OL].自动化学报:1-10 (2020-08-30) [2020-11-20]. https://doi.org/10. 16383 /j.aas.c190858.
QIAN C, FANG Y C, LI Y P. Control oriented modeling and singular perturbation analysis in flapping-wing flight[J/OL]. Acta Automatica Sinica, 2020: 1-10 (2020-08-30) [2020-11-20]. https://doi.org/10.16383/ j.aas.c190858.
[4] 李斌斌, 马磊, 孙小通, 等. 一种多旋翼飞行器的设计及实验验证[J]. 机器人, 2020, 42(03): 257-266.
LI B B, MA L, SUN X T, et al. Design and experimental verification of a multirotor aircraft[J]. ROBOT, 2020, 42(3): 257-266 (in Chinese).
[5] 卢凯文, 杨忠, 张秋雁, 等. 推力矢量可倾转四旋翼自抗扰飞行控制方法[J]. 控制理论与应用, 2020, 37(06):1377-1387.
LU K W, YANG Z, ZHANG Q Y, et al. Active disturbance rejection flight control method for thrust-vectored quadrotor with tiltable rotors[J]. Control Theory & Applications, 2020, 37(06): 1377-1387 (in Chinese).
[6] RITZ R, DANDREA R. A global strategy for tailsitter hover control. Robotics Research[J]. Springer, Cham, 2018: 21-37.
[7] 唐伟, 宋笔锋, 曹煜, 等. 微小型电动垂直起降无人机总体设计方法及特殊参数影响[J]. 航空学报, 2017, 38(10): 120-133.
TANG W, SONG B F, CAO Y, et al. Preliminary design method for miniature electric-powered vertical take-off and landing unmanned airial vehicle and effects of special parameters[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 120-133 (in Chinese).
[8] TIAN B, LU H, ZUO Z, et al. Multivariable uniform finite-time output feedback reentry attitude control for RLV with mismatched disturbance[J]. Journal of the Franklin Institute, 2018, 355(8): 3470-3487.
[9] FANG X, WU A, SHANG Y, et al. A novel sliding mode controller for small-scale unmanned helicopters with mismatched disturbance[J]. Nonlinear Dynamics, 2016, 83(1-2): 1053-1068.
[10] KUN Y A N, MOU C, QINGXIAN W U, et al. Robust adaptive compensation control for unmanned autonomous helicopter with input saturation and actuator faults[J]. Chinese Journal of Aeronautics, 2019, 32(10): 2299-2310.
[11] JIA Z, YU J, MEI Y, et al. Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances[J]. Aerospace Science and Technology, 2017, 68: 299-307.
[12] KURKCU B, KASNAKOGLU C, EFE M ?. Disturbance/uncertainty estimator based integral sliding-mode control[J]. IEEE Transactions on Automatic Control, 2018, 63(11): 3940-3947.
[13] GUO B, CHEN Y. Adaptive fault tolerant control for time-varying delay system with actuator fault and mismatched disturbance[J]. ISA transactions, 2019, 89: 122-130.
[14] ZHANG J, LIU X, XIA Y, et al. Disturbance observer-based integral sliding-mode control for systems with mismatched disturbances[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7040-7048.
[15] YANG J, LI S, YU X. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer[J]. IEEE Transactions on industrial electronics, 2012, 60(1): 160-169.
[16] ASTOLFI A, ORTEGA R. Immersion and invariance: A new tool for stabilization and adaptive control of nonlinear systems[J]. IEEE Transactions on Automatic control, 2003, 48(4): 590-606.
[17] HU J, ZHANG H. Immersion and invariance based command-filtered adaptive backstepping control of VTOL vehicles[J]. Automatica, 2013, 49(7): 2160-2167.
[18] ZOU Y, MENG Z. Immersion and invariance-based adaptive controller for quadrotor systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018 (99): 1-10.
[19] LEE K W, SINGH S N. Quaternion-based adaptive attitude control of asteroid-orbiting spacecraft via immersion and invariance[J]. Acta Astronautica, 2020, 167: 164-180.
[20] KARAGIANNIS D, SASSANO M, ASTOLFI A. Dynamic scaling and observer design with application to adaptive control[J]. Automatica, 2009, 45(12): 2883-2889.
[21] ZHANG B, CAI Y. Immersion and invariance based adaptive backstepping control for body-fixed hovering over an asteroid[J]. IEEE Access, 2019, 7: 34850-34861.
[22] YANG S, AKELLA M R, MAZENC F, Immersion and invariance observers for gyro-free attitude control systems[J]. Journal of Guidance, Control, and Dynamics, 2016: 2570-2577.
[23] DANG Q , GUI H , XU M , et al. Dual-quaternion immersion and invariance velocity observer for controlling asteroid-hovering spacecraft[J]. Acta Astronautica, 2019, 161(AUG.):304-312.
[24] BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099.
[25] BECHLIOULIS C P, ROVITHAKIS G A. Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems[J]. Automatica, 2009, 45(2): 532-538.
[26] SHAO X, HU Q, SHI Y, et al. Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation[J]. IEEE Transactions on Control Systems Technology, 2018.
[27] LUO H, XU H, LIU X. Immersion and invariance based robust adaptive control of high‐speed train with guaranteed prescribed performance bounds[J]. Asian Journal of Control, 2015, 17(6): 2263-2276.
[28] ZHU Y, QIAO J, GUO L. Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing[J]. IEEE Transactions on Industrial Electronics, 2018, 66(3): 1973-1983.
[29] HUA C, CHEN J, GUAN X. Adaptive prescribed performance control of QUAVs with unknown time-varying payload and wind gust disturbance[J]. Journal of the Franklin Institute, 2018, 355(14): 6323-6338.
[30] LIU Y, LIU X, JING Y. Adaptive neural networks finite-time tracking control for non-strict feedback systems via prescribed performance[J]. Information Sciences, 2018, 468: 29-46.
[31] 李小华, 胡利耀. 一类p规范型非线性系统预设性能有限时间H_∞跟踪控制[J/OL].自动化学报:1-11 (2020-11-11) [2020-11-20].https://doi.org/10.16383/j.aa s.c190116.
LI X H, HU Y L. Prescribed performance finite-time H_∞ tracking control for a class of p-normal form nonlinear systems[J/OL]. Acta Automatica Sinica, 1-11 (2020-11-11) [2020-11-20].https://doi.org/10.16383/j.aa s.c190116.
[32] HE S, LI X. Decentralized adaptive prescribed performance finite-time tracking control for a class of nonlinear interconnected systems with unknown control directions[J]. International Journal of Control, 2020: 1-24.
[33] LIU N, SHAO X, LI J, et al. Attitude restricted back-stepping anti-disturbance control for vision based quadrotors with visibility constraint[J]. ISA transactions, 2020, 100: 109-125.
[34] YUAN Y, WANG Z, GUO L, et al. Barrier Lyapunov functions-based adaptive fault tolerant control for flexible hypersonic flight vehicles with full state constraints[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018: 1-10.
[35] XU B, SHI Z, SUN F, et al. Barrier Lyapunov function based learning control of hypersonic flight vehicle with AOA constraint and actuator faults[J]. IEEE transactions on cybernetics, 2018, 49(3): 1047-1057.
[36] LIU Y J, LU S, TONG S, et al. Adaptive control-based barrier Lyapunov functions for a class of stochastic nonlinear systems with full state constraints[J]. Automatica, 2018, 87: 83-93.
[37] HU Q, SHAO X, GUO L. Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance[J]. IEEE/ASME Transactions on Mechatronics, 2017, 23(1): 331-341.
[38] 冯振欣, 郭建国, 周军. 高超声速飞行器新型预设性能控制器设计[J]. 宇航学报, 2018, 39(06): 656-663.
FENG Z X, GUO J G, ZHOU J. Novel prescribed performance controller design for a hypersonic vehicle[J]. Journal of Astronautics, 2018, 39(06): 656-663 (in Chinese).
[39] 马广富, 朱庆华, 王鹏宇, 等. 基于终端滑模的航天器自适应预设性能姿态跟踪控制[J]. 航空学报, 2018, 39(06): 141-151.
MA G F, ZHU Q H, WANG P YU, et al. Adaptive prescribed performance attitude tracking control for spacecraft via terminal sliding-mode technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(06): 141-151 (in Chinese).
[40] HU Q , JIANG B , ZHANG Y . Observer-based output feedback attitude stabilization for spacecraft with finite-time convergence[J]. IEEE Transactions on Control Systems Technology, 2019, 27(2):781-789.
文章导航

/