综述

钎料合金/陶瓷体系润湿行为研究进展

  • 付伟 ,
  • 范振兴 ,
  • 宋晓国 ,
  • 卞红 ,
  • 胡胜鹏 ,
  • 雷玉珍
展开
  • 1. 哈尔滨工业大学 先进焊接与连接国家重点实验室, 哈尔滨 150001;
    2. 哈尔滨工业大学(威海)材料科学与工程学院, 威海 264209

收稿日期: 2020-11-23

  修回日期: 2021-02-02

  网络出版日期: 2021-04-27

基金资助

国家自然科学基金(51905125,51775138,U1737205);山东省"泰山学者"基金(tsqn201812128);山东省重点研发计划(2019GHY112069)

Research progress on wetting behaviors of brazed alloy/ceramic systems

  • FU Wei ,
  • FAN Zhenxing ,
  • SONG Xiaoguo ,
  • BIAN Hong ,
  • HU Shengpeng ,
  • LEI Yuzhen
Expand
  • 1. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China;
    2. School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China

Received date: 2020-11-23

  Revised date: 2021-02-02

  Online published: 2021-04-27

Supported by

National Natural Science Foundation of China (51905125, 51775138, U1737205); Taishan Scholars Foundation of Shandong Province (tsqn201812128); Key Research & Development Program of Shandong Province (2019GHY112069)

摘要

钎料合金/陶瓷体系润湿行为研究对陶瓷的钎焊连接具有重要指导意义。目前主要在真空系统中开展润湿性试验,除了常规的座滴法,改良座滴法、滴落法以及液桥过渡法逐渐被采用以便获得更加准确的试验数据。钎料合金在陶瓷表面的润湿过程涉及溶解、扩散、界面吸附和反应等,是一种非常复杂的物理化学现象。根据驱动润湿的本质因素,可将润湿机制分为:溶解驱动润湿、吸附驱动润湿和界面反应驱动润湿。然而由于界面行为的复杂性,往往很难进行严格的划分。根据钎料合金/陶瓷界面行为特点,分别建立了反应控制润湿模型和扩散控制模型来研究体系的铺展动力学。对钎料进行合金化处理和陶瓷表面改性是改善润湿性的常用方法,本文主要从润湿性的表征和测量、润湿机制、铺展动力学模型和改善润湿性措施等方面,综述了钎料合金/陶瓷体系润湿行为研究的进展。

本文引用格式

付伟 , 范振兴 , 宋晓国 , 卞红 , 胡胜鹏 , 雷玉珍 . 钎料合金/陶瓷体系润湿行为研究进展[J]. 航空学报, 2022 , 43(4) : 525001 -525001 . DOI: 10.7527/S1000-6893.2021.25001

Abstract

Investigation of the wetting behaviors of the brazed alloy/ceramic system is instructional for the brazing of ceramics. At present, the wetting test is usually conducted in the vacuum furnace. Except the conventional sessile drop method, the modified sessile drop method, dispensed drop method and transferred drop method are developed to acquire more accurate parameters. The wetting of brazing alloy on the ceramic surface involves dissolution, diffusion, interfacial adsorption and reaction, etc., and is a complex physical and chemical phenomenon. According to the nature of driving wetting, the wetting mechanisms can be divided into three types:dissolution-driving wetting, adsorption-driving wetting, and interfacial reaction-driving wetting. However, owing to the complexity of interfacial reactions, they have ambiguous definitions. The reaction-control wetting model and diffusion-control wetting model are established based on typical interfacial behaviors in the brazed alloy/ceramic system. Alloying and modifying ceramic surfaces are the common methods to improve wettability. This article summarizes the research progress of the wetting behaviors of the brazed alloy/ceramic system from the following aspects:characterization and measurement of wettability, wetting mechanism, spreading kinetic models and measures of improving wettability.

参考文献

[1] XUE Z L, MA Y, GONG S K, et al. Impermeability of Y3Al5O12 ceramic against molten glassy calcium-magnesium-alumina-silicate[J]. Chinese Journal of Aeronautics, 2018, 31(12):2306-2311.
[2] 段辉平, 李树杰, 刘登科, 等. SiC陶瓷与GH128镍基高温合金反应连接研究[J]. 航空学报, 2000, 21(S1):122-125. DUAN H P, LI S J, LIU D K, et al. Investigation on the reaction joining of sic ceramic to ni based superalloy[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(S1):122-125(in Chinese).
[3] 卞红, 胡胜鹏, 宋晓国, 等. 钎焊温度对Ti60/AgCu/ZrO2接头界面组织及性能的影响[J]. 航空学报, 2017, 38(12):421402. BIAN H, HU S P, SONG X G, et al. Effect of brazing temperature on interfacial microstructure and mechanical property of Ti60/AgCu/ZrO2 joint[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):421402(in Chinese).
[4] BIAN H, SONG Y Y, LIU D, et al. Joining of SiO2 ceramic and TC4 alloy by nanoparticles modified brazing filler metal[J]. Chinese Journal of Aeronautics, 2020, 33(1):383-390.
[5] VALENZA F, GAMBARO S, MUOLO M L, et al. Wetting of SiC by Al-Ti alloys and joining by in situ formation of interfacial Ti3 Si(Al)C2[J]. Journal of the European Ceramic Society, 2018, 38(11):3727-3734.
[6] EUSTATHOPOULOS N, VOYTOVYCH R. The role of reactivity in wetting by liquid metals:A review[J]. Journal of Materials Science, 2016, 51(1):425-437.
[7] LIN Q L, WANG L, SUI R. Wetting of AlN by moten Cu-8.6Zr-xTi ternary alloys at 1373 K[J]. Acta Materialia, 2021, 203:116488.
[8] YANG J, LI H D, LEI X W, et al. Reactive wetting behavior and mechanism of AlN ceramic by CuNi-Xwt%Ti active filler metal[J]. Ceramics International, 2020, 46(4):4289-4299.
[9] LI C, ZHANG K P, MAO X J, et al. Microstructure and mechanical properties of the AlON/Ti6Al4V active element brazing joint[J]. Materials Science and Engineering:A, 2020, 793:139859.
[10] SUN Z, ZHANG L X, HAO T D, et al. Brazing of SiO2f/SiO2 composite to Invar using a graphene-modified Cu-23Ti braze filler[J]. Ceramics International, 2018, 44(13):15809-15816.
[11] TIAN X Y, FENG J C, SHI J M, et al. Brazing of ZrB2-SiC-C ceramic and GH99 superalloy to form reticular seam with low residual stress[J]. Ceramics International, 2015, 41(1):145-153.
[12] ZHAO Y X, WANG M R, CAO J, et al. Brazing TC4 alloy to Si3N4 ceramic using nano-Si3N4 reinforced AgCu composite filler[J]. Materials & Design, 2015, 76:40-46.
[13] EUSTATHOPOULOS N, NICHOLAS M G, DREVET B. Wettability at high temperatures[M]. Oxford:Pergamon, 1999.
[14] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95:65-87.
[15] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8):988-994.
[16] WU M, CHANG L L, ZHANG L, et al. Effects of roughness on the wettability of high temperature wetting system[J]. Surface and Coatings Technology, 2016, 287:145-152.
[17] SHEN P, FUJII H, NOGI K. Effect of temperature and surface roughness on the wettability of boron nitride by molten Al[J]. Journal of Materials Science, 2007, 42(10):3564-3568.
[18] 吴茂, 常玲玲, 路新, 等. 粗糙度对金属/陶瓷反应润湿体系高温润湿性的影响[J]. 材料热处理学报, 2016, 37(7):25-32. WU M, CHANG L L, LU X, et al. Effects of surface roughness on wettability of reactive metal/ceramic wetting systems at high temperature[J]. Transactions of Materials and Heat Treatment, 2016, 37(7):25-32(in Chinese).
[19] 付伟. Sn-Ti对石墨和陶瓷的润湿及低温连接机理研究[D]. 哈尔滨:哈尔滨工业大学, 2019. FU W. Research on the mechanism of wetting and low-temperature bonding of graphite and ceramics by Sn-Ti[D]. Harbin:Harbin Institute of Technology, 2019(in Chinese).
[20] FU W, SONG X G, ZHAO Y X, et al. Effect of Ti content on the wetting behavior of Sn0.3Ag0.7Cu/AlN system[J]. Materials & Design, 2017, 115:1-7.
[21] YANG L L, SHEN P, LIN Q L, et al. Wetting of porous graphite by Cu-Ti alloys at 1373 K[J]. Materials Chemistry and Physics, 2010, 124(1):499-503.
[22] SHEN P, FUJII H, MATSUMOTO T, et al. The influence of surface structure on wetting of α-Al2O3 by aluminum in a reduced atmosphere[J]. Acta Materialia, 2003, 51(16):4897-4906.
[23] SHEN P, FUJII H, MATSUMOTO T, et al. Wetting of (0001) α-Al2O3 single crystals by molten Al[J]. Scripta Materialia, 2003, 48(6):779-784.
[24] VOYTOVYCH R, ROBAUT F, EUSTATHOPOULOS N. The relation between wetting and interfacial chemistry in the CuAgTi/alumina system[J]. Acta Materialia, 2006, 54(8):2205-2214.
[25] VOITOVITCH R, MORTENSEN A, HODAJ F, et al. Diffusion-limited reactive wetting:study of spreading kinetics of Cu-Cr alloys on carbon substrates[J]. Acta Materialia, 1999, 47(4):1117-1128.
[26] LIN Q L, YANG F, YANG H Y, et al. Wetting of graphite by molten Cu-xSn-yCr ternary alloys at 1373 K[J]. Carbon, 2020, 159:561-569.
[27] SUI R, WANG J B, CI W J, et al. Reactive wetting of amorphous silica by Sn0.3Ag0.7Cu-xTi (x=1 and 3wt.%) alloys at 800-900℃[J]. Ceramics International, 2019, 45(10):12920-12925.
[28] SONG X G, PASSERONE A, FU W, et al. Wetting and spreading behavior of Sn-Ti alloys on SiC[J]. Materialia, 2018, 3:57-63.
[29] LI M M, SONG X G, HU S P, et al. Effect of Ti addition on the wetting and brazing of Sn0.3Ag0.7Cu filler on SiC ceramic[J]. Journal of the American Ceramic Society, 2019, 102(6):3318-3328.
[30] LI L, WEI C, SHEN P, et al. DC-assisted rapid wetting of 3Y-PSZ by molten 72Ag-28Cu and its application in joining[J]. Journal of the European Ceramic Society, 2019, 39(6):2132-2139.
[31] SONG X G, ZHAO Y X, HU S P, et al. Wetting of AgCu-Ti filler on porous Si3N4 ceramic and brazing of the ceramic to TiAl alloy[J]. Ceramics International, 2018, 44(5):4622-4629.
[32] 刘桂武, 乔冠军, 卢天健, 等. Ni-56Si合金对SiC陶瓷的润湿和铺展[J]. 硅酸盐学报, 2010, 38(8):1509-1513. LIU G W, QIAO G J, LU T J, et al. Wetting and spreading of ni-56 si alloy on sic ceramic[J]. Journal of the Chinese Ceramic Society, 2010, 38(8):1509-1513(in Chinese).
[33] AKSAY I A, HOGE C E, PASK J A. Wetting under chemical equilibrium and nonequilibrium conditions[J]. The Journal of Physical Chemistry, 1974, 78(12):1178-1183.
[34] LAURENT V, CHATAIN D, EUSTATHOPOULOS N. Wettability of SiO2 and oxidized SiC by aluminium[J]. Materials Science and Engineering:A, 1991, 135:89-94.
[35] ESPIÉ L, DREVET B, EUSTATHOPOULOS N. Experimental study of the influence of interfacial energies and reactivity on wetting in metal/oxide systems[J]. Metallurgical and Materials Transactions A, 1994, 25(3):599-605.
[36] YANG J, HUANG J H, YE Z, et al. Influence of interfacial reaction on reactive wettability of molten Ag-Cu-X wt.%Ti filler metal on SiC ceramic substrate and mechanism analysis[J]. Applied Surface Science, 2018, 436:768-778.
[37] KRITSALIS P, COUDURIER L, EUSTATHOPOULOS N. Contribution to the study of reactive wetting in the CuTi/Al2O3 system[J]. Journal of Materials Science, 1991, 26(12):3400-3408.
[38] SAIZ E, CANNON R M, TOMSIA A P. Reactive spreading:adsorption, ridging and compound formation[J]. Acta Materialia, 2000, 48(18-19):4449-4462.
[39] GREMILLARD L, SAIZ E, CHEVALIER J, et al. Wetting and strength in the tin-silver-titanium/sapphire system[J]. Zeitschrift Für Metallkunde, 2004, 95(4):261-265.
[40] SUI R, JU C Y, ZHONG W Q, et al. Improved wetting of Al2O3 by molten Sn with Ti addition at 973-1273 K[J]. Journal of Alloys and Compounds, 2018, 739:616-622.
[41] 林巧力. 金属熔体在碳化物陶瓷上的润湿性及铺展动力学[D]. 长春:吉林大学, 2011:29-52. LIN Q L. Wettability and spreading dynamics of carbide ceramics by molten metals[D]. Changchun:Jilin University, 2011:29-52(in Chinese).
[42] LIN Q L, SUI R. Wetting of carbide ceramics (B4C, SiC, TiC and ZrC) by molten Ni at 1753 K[J]. Journal of Alloys and Compounds, 2015, 649:505-514.
[43] YANG J, YE Z, HUANG J H, et al. First-principles calculations on wetting interface between Ag-Cu-Ti filler metal and SiC ceramic:Ag (11 1)/SiC (11 1) interface and Ag (11 1)/TiC(11 1) interface[J]. Applied Surface Science, 2018, 462:55-64.
[44] LANDRY K, EUSTATHOPOULOS N. Dynamics of wetting in reactive metal/ceramic systems:linear spreading[J]. Acta Materialia, 1996, 44(10):3923-3932.
[45] DEZELLUS O, HODAJ F, EUSTATHOPOULOS N. Chemical reaction-limited spreading:The triple line velocity versus contact angle relation[J]. Acta Materialia, 2002, 50(19):4741-4753.
[46] DEZELLUS O, HODAJ F, EUSTATHOPOULOS N. Progress in modelling of chemical-reaction limited wetting[J]. Journal of the European Ceramic Society, 2003, 23(15):2797-2803.
[47] BOUGIOURI V, VOYTOVYCH R, DEZELLUS O, et al. Wetting and reactivity in Ni-Si/C system:experiments versus model predictions[J]. Journal of Materials Science, 2007, 42(6):2016-2023.
[48] CALDERON N R, VOYTOVYCH R, NARCISO J, et al. Wetting dynamics versus interfacial reactivity of AlSi alloys on carbon[J]. Journal of Materials Science, 2010, 45(8):2150-2156.
[49] FU W, PASSERONE A, BIAN H, et al. Wetting and interfacial behavior of Sn-Ti alloys on zirconia[J]. Journal of Materials Science, 2019, 54(1):812-822.
[50] MORTENSEN A, DREVET B, EUSTATHOPOULOS N. Kinetics of diffusion-limited spreading of sessile drops in reactive wetting[J]. Scripta Materialia, 1997, 36(6):645-651.
[51] KRITSALIS P, LI J G, COUDURIER L, et al. Role of clusters on the wettability and work of adhesion of the Cu-Cr/Al2O3 system[J]. Journal of Materials Science Letters, 1990, 9(11):1332-1335.
[52] KOLTSOV A, HODAJ F, EUSTATHOPOULOS N, et al. Wetting and interfacial reactivity in Ag-Zr/sintered AlN system[J]. Scripta Materialia, 2003, 48(4):351-357.
[53] AN Q, CONG X S, SHEN P, et al. Roles of alloying elements in wetting of SiC by Al[J]. Journal of Alloys and Compounds, 2019, 784:1212-1220.
[54] DREVET B, EUSTATHOPOULOS N. Wetting of ceramics by molten silicon and silicon alloys:A review[J]. Journal of Materials Science, 2012, 47(24):8247-8260.
[55] 李庆奎, 钟晖, 戴艳阳, 等. Fe-Cr合金在TiO陶瓷上的润湿及其机理[J]. 中国有色金属学报, 2002, 12(4):677-681. LI Q K, ZHONG H, DAI Y Y, et al. Wettability and mechanism of liquid Fe-Cr on TiO[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(4):677-681(in Chinese).
[56] CHEN Z B, HU S P, SONG X G, et al. Brazing of SiC ceramics pretreated by chromium coating using inactive AgCu filler metal[J]. International Journal of Applied Ceramic Technology, 2020, 17(6):2591-2597.
[57] SONG X G, CHEN Z B, HU S P, et al. Wetting behavior and brazing of titanium-coated SiC ceramics using Sn0.3Ag0.7Cu filler[J]. Journal of the American Ceramic Society, 2020, 103(2):912-920.
[58] XU Q G, GUO L W, ZHANG L, et al. Wettability of zirconium-coated alumina by molten aluminum[J]. Surface and Coatings Technology, 2016, 302:150-157.
[59] 黄志坤. Al-Si-X/(Pd-)SiC体系的高温润湿与界面行为研究[D]. 镇江:江苏大学, 2018. HUANG Z K. Research on the high-temperature wetting and interfacial behavior of Al-Si-X/(Pd-)SiC system[D]. Zhenjiang:Jiangsu University, 2018(in Chinese).
[60] 朱亚龙. Si离子注入对金属/SiC体系润湿性和界面行为的影响研究[D]. 镇江:江苏大学, 2020. ZHU Y L. Effects of Si ion implantation on wettability and interfacial behavior of metal/SiC systems[D]. Zhenjiang:Jiangsu University, 2020(in Chinese).
[61] SUN Z, CAO Y, ZHANG L X, et al. Carbothermal reduction reaction enhanced wettability and brazing strength of AgCuTi-SiO2f/SiO2 system[J]. Journal of the European Ceramic Society, 2020, 40(4):1488-1495.
[62] ZHANG L X, CHANG Q, SUN Z, et al. Wetting of AgCuTi alloys on quartz fiber reinforced composite modified by vertically aligned carbon nanotubes[J]. Carbon, 2019, 154:375-383.
[63] YANNOPOULOS S N, SIOKOU A, NASIKAS N K, et al. CO2-laser-induced growth of epitaxial graphene on 6H-SiC(0001)[J]. Advanced Functional Materials, 2012, 22(1):113-120.
[64] DASKALOVA A, ANGELOVA L, CARVALHO A, et al. Effect of surface modification by femtosecond laser on zirconia based ceramics for screening of cell-surface interaction[J]. Applied Surface Science, 2020, 513:145914.
[65] YANG L L, SHEN P, LIN Q L, et al. Effect of Cr on the wetting in Cu/graphite system[J]. Applied Surface Science, 2011, 257(14):6276-6281.
[66] SWILER T P, LOEHMAN R E. Molecular dynamics simulations of reactive wetting in metal-ceramic systems[J]. Acta Materialia, 2000, 48(18-19):4419-4424.
[67] 刘许旸. Ti-Al系熔体与陶瓷的润湿性及界面相互作用的行为研究[D]. 重庆:重庆大学, 2016:27-134. LIU X Y. Research on the wettability and interfacial interaction between Ti-Al molten alloys and ceramics[D]. Chongqing:Chongqing University, 2016:27-134(in Chinese).
文章导航

/