多相流与反应流的机理、模型及其调控技术专栏

湍流燃烧机理和调控的活性子空间分析方法

  • 王娜娜 ,
  • 解青 ,
  • 苏星宇 ,
  • 任祝寅
展开
  • 1. 清华大学 航空发动机研究院, 北京 100084;
    2. 清华大学 燃烧能源中心, 北京 100084

收稿日期: 2021-01-06

  修回日期: 2021-01-25

  网络出版日期: 2021-04-27

基金资助

国家自然科学基金(91841302,52025062)

Active subspace methods for analysis and optimization of turbulent combustion

  • WANG Nana ,
  • XIE Qing ,
  • SU Xingyu ,
  • REN Zhuyin
Expand
  • 1. Institute for Aero Engine, Tsinghua University, Beijing 100084, China;
    2. Center for Combustion Energy, Tsinghua University, Beijing 100084, China

Received date: 2021-01-06

  Revised date: 2021-01-25

  Online published: 2021-04-27

Supported by

National Natural Science Foundation of China (91841302,52025062)

摘要

高效、低排放等需求促使发动机燃烧趋于近极限燃烧组织,亟需在稳定可控燃烧方面取得突破。湍流燃烧机理复杂,影响湍流燃烧数值模拟预测的物理化学和初始/边界条件参数众多。但是在该高维映射关系中,预测目标量往往仅在输入参数空间中的少数方向上梯度显著,称之为活跃方向。当活跃方向与空间基的方向不一致时,采用传统的全局敏感性方法难以高效地分析出主控参数以及后续的湍流燃烧机理。而活性子方法可以通过梯度的协方差矩阵特征分解得到上述活跃方向。本文综述了活性子空间方法理论及在湍流燃烧模拟中的应用:即探究海量输入参数空间中的活跃方向,构造低维活性子空间和低维响应面,从而高效地量化模拟不确定性、表征主控物理过程,从而揭示湍流燃烧机理。最后,进一步探讨了基于活性子空间分析方法的湍流燃烧调控。

本文引用格式

王娜娜 , 解青 , 苏星宇 , 任祝寅 . 湍流燃烧机理和调控的活性子空间分析方法[J]. 航空学报, 2021 , 42(12) : 625228 -625228 . DOI: 10.7527/S1000-6893.2021.25228

Abstract

The demands for high efficiency and low emissions have driven the engines to near-limit combustion, leading to an urgent need for the development of innovative methods to analyze and modulate turbulent flames for stable combustion. There is a huge number of parameters affecting the flames. The quantity of predicted targets in turbulent flames varies primarily along a few directions in the space of input parameters. The classic global sensitivity measures to determine the most influential parameters perform poorly when the directions of variability are not aligned with the natural coordinates of the input space. We present the active subspace methods to first detect the directions of the strongest variability using evaluations of the gradient and subsequently exploit these directions to construct a response surface on a low-dimensional subspace-i.e., the active subspace of the inputs. With the active subspace methods, a theoretical framework has been formulated to efficiently quantify the uncertainty originating from the parameters of chemical kinetics and physical models for a more rigorous assessment of the predictability of simulations and to investigate the evolution of the key physiochemical processes in turbulent flames. The approach has recently been demonstrated for uncertainty quantification and flame stabilization analysis in turbulent flames and model combustion systems. In this work, the major findings are reviewed, with a discussion on future work for the analysis and modulation of turbulent flames with active subspace methods.

参考文献

[1] WANG F, XIE X, JIANG Q, et al. Effect of turbulence on NO formation in swirling combustion[J]. Chinese Journal of Aeronautics, 2014, 27(4):797-804.
[2] 陈钱, 张会强, 王兵, 等. 超声速混合层燃烧研究进展[J]. 航空学报, 2017, 38(1):020036. CHEN Q, ZHANG H Q, WANG B, et al. Research progress of combustion in supersonic mixing layers[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):020036(in Chinese).
[3] OKAFOR E C, SOMARATHNE K D A, RATTHANAN R, et al. Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia[J]. Combustion and Flame, 2020, 211:406-416.
[4] ALADAWY A S, LEE J G, ABDELNABI B. Effect of turbulence on NOx emission in a lean perfectly-premixed combustor[J]. Fuel, 2017, 208:160-167.
[5] BISWAS S, QIAO L. A Numerical investigation of ignition of ultra-lean premixed H2/Air mixtures by pre-chamber supersonic hot jet[J]. SAE International Journal of Engines, 2017, 10(5):2231-2247.
[6] 刘英杰, 刘潇, 周波, 等. 低旋流预混燃烧稳燃机理的大涡模拟[J]. 航空动力学报, 2020, 35(2):298-304. LIU Y J, LIU X, ZHOU B, et al. Large eddy simulation of low swirl premixed flame stabilization mechanism[J]. Journal of Aerospace Power, 2020, 35(2):298-304(in Chinese).
[7] GEORGIADIS N J, RIZZETTA D P, FUREBY C. Large-eddy simulation:Current capabilities, recommended practices, and future research[J]. AIAA Journal, 2010, 48(8):1772-1784.
[8] 曹建国. 航空发动机仿真技术研究现状、挑战和展望[J]. 推进技术, 2018, 39(5):961-70. CAO J G. Status, challenges and perspectives of aero-engine simulation technology[J]. Journal of Propulsion Technology, 2018, 39(5):961-970(in Chinese).
[9] 樊雪松, 陈阳, 吴德权, 等. 反应机理对air/H2燃烧系统多场耦合仿真的适用性[J]. 航空动力学报, 2018, 33(10):2392-2403. FAN X S, CHEN Y, WU D Q, et al. Applicability of reaction mechanisms to multi-field coupling simulation of air/H2 combustion system[J]. Journal of Aerospace Power, 2018, 33(10):2392-2403(in Chinese).
[10] WANG H, SHEEN D A. Combustion kinetic model uncertainty quantification, propagation and minimization[J]. Progress in Energy and Combustion Science, 2015, 47:1-31.
[11] SHEEN D A, WANG H. The method of uncertainty quantification and minimization using polynomial chaos expansions[J]. Combustion and Flame, 2011, 158(12):2358-2374.
[12] 杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报, 2015, 36(1):261-273. YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):261-273(in Chinese).
[13] KHALIL M, LACAZE G, OEFELEIN J C, et al. Uncertainty quantification in LES of a turbulent bluff-body stabilized flame[J]. Proceedings of the Combustion Institute, 2015, 35(2):1147-1156.
[14] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences, NASA/CR-2014-218178[R]. Washington,D.C.:NASA,2014.
[15] MUELLER M E, RAMAN V. Model form uncertainty quantification in turbulent combustion simulations:Peer models[J]. Combustion and Flame, 2018, 187:137-146.
[16] WARNATZ J. Resolution of gas phase and surface combustion chemistry into elementary reactions[J]. Symposium (International) on Combustion, 1992, 24(1):553-579.
[17] SMOOKE M D, RABITZ H, REUVEN Y, et al. Application of sensitivity analysis to premixed hydrogen-air flames[J]. Combustion Science and Technology, 1988, 59(4-6):295-319.
[18] DUCHAINE F, BOUDY F, DUROX D, et al. Sensitivity analysis of transfer functions of laminar flames[J]. Combustion and Flame, 2011, 158(12):2384-2394.
[19] REN Z Y, POPE S B. Sensitivity calculations in PDF modelling of turbulent flames[J]. Proceedings of the Combustion Institute, 2009, 32(1):1629-1637.
[20] ZHOU H, LI S, REN Z Y, et al. Investigation of mixing model performance in transported PDF calculations of turbulent lean premixed jet flames through Lagrangian statistics and sensitivity analysis[J]. Combustion and Flame, 2017, 181:136-148.
[21] WANG H, ZHOU H, REN Z Y, et al. Transported PDF simulation of turbulent CH4/H2 flames under MILD conditions with particle-level sensitivity analysis[J]. Proceedings of the Combustion Institute, 2019, 37(4):4487-4495.
[22] 周华, 王琥, 任祝寅. 湍流燃烧概率密度函数(PDF)模拟的敏感性分析[J]. 工程热物理学报, 2017, 38(1):208-212. ZHOU H, WANG H, REN Z Y. Sensitivity analysis in transported PDF simulations of turbulent combustion[J]. Journal of Engineering Thermophysics, 2017, 38(1):208-212(in Chinese).
[23] LUCOR D, MEYERS J, SAGAUT P. Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos[J]. Journal of Fluid Mechanics, 2007, 585:255-279.
[24] SCHAEFER J, HOSDER S, WEST T, et al. Uncertainty quantification of turbulence model closure coefficients for transonic wall-bounded flows[J]. AIAA Journal, 2016, 55(1):195-213.
[25] MARGHERI L, MELDI M, SALVETTI M V, et al. Epistemic uncertainties in RANS model free coefficients[J]. Computers & Fluids, 2014, 102:315-335.
[26] EMORY M, LARSSON J, IACCARINO G. Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures[J]. Physics of Fluids, 2013, 25(11):110822.
[27] GORLÉ C, IACCARINO G. A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations[J]. Physics of Fluids, 2013, 25(5):055105.
[28] MISHRA A A, IACCARINO G. Uncertainty estimation for Reynolds-Averaged Navier-Stokes predictions of high-speed aircraft nozzle jets[J]. AIAA Journal, 2017, 55(11):3999-4004.
[29] GORLÉ C, ZEOLI S, EMORY M, et al. Epistemic uncertainty quantification for Reynolds-averaged Navier-Stokes modeling of separated flows over streamlined surfaces[J]. Physics of Fluids, 2019, 31(3):035101.
[30] MUELLER M E, IACCARINO G, PITSCH H. Chemical kinetic uncertainty quantification for Large Eddy Simulation of turbulent nonpremixed combustion[J]. Proceedings of the Combustion Institute, 2013, 34(1):1299-1306.
[31] MUELLER M E, RAMAN V. Effects of turbulent combustion modeling errors on soot evolution in a turbulent nonpremixed jet flame[J]. Combustion and Flame, 2014, 161(7):1842-1848.
[32] CONSTANTINE P G, DOW E, WANG Q. Active subspace methods in theory and practice:applications to kriging surfaces[J]. SIAM Journal on Scientific Computing, 2014, 36(4):A1500-A1524.
[33] CONSTANTINE P G. Active subspaces[M]. Philadelphia:Society for Industrial and Applied Mathematics, 2015.
[34] CONSTANTINE P G, DIAZ P. Global sensitivity metrics from active subspaces[J]. Reliability Engineering & System Safety, 2017, 162:1-13.
[35] PARENTE A, SUTHERLAND J C, TOGNOTTI L, et al. Identification of low-dimensional manifolds in turbulent flames[J]. Proceedings of the Combustion Institute, 2009, 32(1):1579-1586.
[36] XIE W, LU Z, REN Z, et al. Dynamic adaptive acceleration of chemical kinetics with consistent error control[J]. Combustion and Flame, 2018, 197:389-399.
[37] SUTHERLAND J C, PARENTE A. Combustion modeling using principal component analysis[J]. Proceedings of the Combustion Institute, 2009, 32(1):1563-1570.
[38] ISAAC B J, THORNOCK J N, SUTHERLAND J, et al. Advanced regression methods for combustion modelling using principal components[J]. Combustion and Flame, 2015, 162(6):2592-2601.
[39] ECHEKKI T, MIRGOLBABAEI H. Principal component transport in turbulent combustion:A posteriori analysis[J]. Combustion and Flame, 2015, 162(5):1919-1933.
[40] MALIK M R, ISAAC B J, COUSSEMENT A, et al. Principal component analysis coupled with nonlinear regression for chemistry reduction[J]. Combustion and Flame, 2018, 187:30-41.
[41] BIGLARI A, SUTHERLAND J C. A filter-independent model identification technique for turbulent combustion modeling[J]. Combustion and Flame, 2012, 159(5):1960-1970.
[42] MIRGOLBABAEI H, ECHEKKI T. A novel principal component analysis-based acceleration scheme for LES-ODT:An a priori study[J]. Combustion and Flame, 2013, 160(5):898-908.
[43] MALIK M R, OBANDO VEGA P, COUSSEMENT A, et al. Combustion modeling using Principal Component Analysis:A posteriori validation on Sandia flames D, E and F[J]. Proceedings of the Combustion Institute, 2021, 38(2):2635-2643.
[44] CONSTANTINE P G, EMORY M, LARSSON J, et al. Exploiting active subspaces to quantify uncertainty in the numerical simulation of the HyShot II scramjet[J]. Journal of Computational Physics, 2015, 302:1-20.
[45] DEL ROSARIO Z, CONSTANTINE P, IACCARINO G. Developing design insight through active subspaces[C]//19th AIAA Non-Deterministic Approaches Conference. Reston:AIAA, 2017.
[46] GREY Z J, CONSTANTINE P G. Active subspaces of airfoil shape parameterizations[J]. AIAA Journal, 2018, 56(5):2003-2017.
[47] SESHADRI P, SHAHPAR S, CONSTANTINE P, et al. Turbomachinery active subspace performance maps[J]. Journal of Turbomachinery, 2018, 140(4):041003.
[48] CORTESI A F, CONSTANTINE P G, MAGIN T E, et al. Forward and backward uncertainty quantification with active subspaces:Application to hypersonic flows around a cylinder[J]. Journal of Computational Physics, 2020, 407:109079.
[49] MAGRI L, BAUERHEIM M, NICOUD F, et al. Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part II. Uncertainty quantification[J]. Journal of Computational Physics, 2016, 325:411-421.
[50] GUAN C, ZHAI J Q, HAN D. Cetane number prediction for hydrocarbons from molecular structural descriptors based on active subspace methodology[J]. Fuel, 2019, 249:1-7.
[51] GUAN C, LU M R, ZENG W, et al. Prediction of standard enthalpies of formation based on hydrocarbon molecular descriptors and active subspace methodology[J]. Industrial & Engineering Chemistry Research, 2020, 59(10):4785-4791.
[52] GUAN C, MA Q J, HUANG Z, et al. Application of active subspace method in gas exchange strategy calibration on a variable valve timing gasoline engine[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(7):071003.
[53] JI W Q, WANG J X, ZAHM O, et al. Shared low-dimensional subspaces for propagating kinetic uncertainty to multiple outputs[J]. Combustion and Flame, 2018, 190:146-157.
[54] JI W Q, REN Z Y, MARZOUK Y, et al. Quantifying kinetic uncertainty in turbulent combustion simulations using active subspaces[J]. Proceedings of the Combustion Institute, 2019, 37(2):2175-2182.
[55] VOHRA M, ALEXANDERIAN A, GUY H, et al. Active subspace-based dimension reduction for chemical kinetics applications with epistemic uncertainty[J]. Combustion and Flame, 2019, 204:152-161.
[56] WANG N N, XIE Q, SU X Y, et al. Quantification of modeling uncertainties in turbulent flames through successive dimension reduction[J]. Combustion and Flame, 2020, 222:476-489.
[57] WANG N N, TIANWEI Y W, REN Z Y. Active subspace variation and modeling uncertainty in a supersonic flame simulation[J]. AIAA Journal, 2021, 59(5):1798-1807.
[58] PINKUS A. Ridge functions[M]. Cambridge:Cambridge University Press, 2015.
[59] CONSTANTINE P G, ZAHARATOS B, CAMPANELLI M. Discovering an active subspace in a single-diode solar cell model[J]. Statistical Analysis and Data Mining:The ASA Data Science Journal, 2015, 8(5-6):264-273.
[60] VOHRA M, MAHADEVAN S. Discovering the active subspace for efficient UQ of molecular dynamics simulations of phonon transport in silicon[J]. International Journal of Heat and Mass Transfer, 2019, 132:577-586.
[61] CABRA R, MYHRVOLD T, CHEN J Y, et al. Simultaneous laser Raman-Rayleigh-lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow[J]. Proceedings of the Combustion Institute, 2002, 29(2):1881-1888.
[62] LI J, ZHAO Z W, KAZAKOV A, et al. An updated comprehensive kinetic model of hydrogen combustion[J]. International Journal of Chemical Kinetics, 2004, 36(10):566-575.
[63] SHEEN D A, YOU X Q, WANG H, et al. Spectral uncertainty quantification, propagation and optimization of a detailed kinetic model for ethylene combustion[J]. Proceedings of the Combustion Institute, 2009, 32(1):535-542.
[64] KONNOV A A. Remaining uncertainties in the kinetic mechanism of hydrogen combustion[J]. Combustion and Flame, 2008, 152(4):507-528.
[65] BURROWS M, KURKOV A. Supersonic combustion of hydrogen in a vitiated air stream using stepped-wall injection[C]//7th Propulsion Joint Specialist Conference. Reston:AIAA, 1971.
[66] BURROWS M C, KURKOV A P. An analytical and experimental study of supersonic combustion of hydrogen in vitiated air stream[J]. AIAA Journal, 1973, 11(9):1217-1218.
[67] WU W T, PIAO Y, LIU H. Analysis of flame stabilization mechanism in a hydrogen-fueled reacting wall-jet flame[J]. International Journal of Hydrogen Energy, 2019, 44(48):26609-26623.
[68] ZHANG L, WANG N N, WEI J L, et al. Exploring active subspace for neural network prediction of oscillating combustion[J]. Combustion Theory and Modelling, 2021, 25(3):570-587.
[69] BRIONES A M, RUMPFKEIL M P, THOMAS N R, et al. Effect of deterministic and continuous design space resolution on multiple-objective combustor optimization[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(12):121012.
文章导航

/