电子电气工程与控制

网络攻击下无人机信息物理系统的自适应状态估计

  • 李笑宇 ,
  • 冯肖雪 ,
  • 潘峰 ,
  • 蒲宁
展开
  • 1. 北京理工大学 自动化学院, 北京 100081;
    2. 北京理工大学 昆明产业技术研究院, 昆明 650106;
    3. 云南省遥感中心, 昆明 650034

收稿日期: 2020-12-31

  修回日期: 2021-01-23

  网络出版日期: 2021-04-27

基金资助

国家自然科学基金(61433003)

Adaptive state estimate for unmanned aircraft cyber-physical system with cyber attack

  • LI Xiaoyu ,
  • FENG Xiaoxue ,
  • PAN Feng ,
  • PU Ning
Expand
  • 1. School of Automation, Beijing Institute of Technology, Beijing 100081, China;
    2. Kunming Industry Technology Research Institute INC, Beijing Institute of Technology, Kunming 650106, China;
    3. Yunnan Remote Sensing Center, Kunming 650034, China

Received date: 2020-12-31

  Revised date: 2021-01-23

  Online published: 2021-04-27

Supported by

National Natural Science Foundation of China (61433003)

摘要

针对网络攻击下无人机信息物理系统(CPS)的安全状态估计问题,提出了一种基于自适应方差极小化的递推状态估计器(AVMRE)。通过将针对控制输入和传感器数据的恶意攻击分别建模为状态和量测方程中的未知干扰项,建立了未知干扰解耦状态递推估计器,实现滤波误差中的量测未知干扰解耦,利用滤波残差设计自适应调整因子对估计误差上界进行极小化,应用最小方差估计准则求解出算法中的量测增益反馈矩阵。同时引入事件触发机制,使得系统在保持一定估计精度的情况下节省通信资源。此外,给出了滤波误差指数有界性的充分条件。无人机飞行模型仿真验证了本文算法相比传统算法的有效性和优越性。

本文引用格式

李笑宇 , 冯肖雪 , 潘峰 , 蒲宁 . 网络攻击下无人机信息物理系统的自适应状态估计[J]. 航空学报, 2022 , 43(3) : 325193 -325193 . DOI: 10.7527/S1000-6893.2021.25193

Abstract

An Adaptive-Variance-Minimization-based Recursive Estimator (AVMRE) is proposed for the problem of secure state estimation of Unmanned Aerial Vehicle (UAV) Cyber-Physical System (CPS).By modeling the data attacks on control commands and sensors as the unknown disturbances in the state and measurement equations respectively, an unknown disturbances decoupling state recursive estimator is established, which realizes the unknown measurement disturbances decoupling in filter error.Then, the adaptive adjust factor is designed by the filter residual to minimize the upper bound of the estimate error.Finally, the measurement gain feedback matrix in the algorithm is deduced based on the minimum variance estimation criterion.The distributed event-trigger mechanism is also considered, so that the system can save communication resources in the case of maintaining certain estimation accuracy.In addition, a sufficient condition for the filter error exponential boundedness is given.Simulation results of the UAV flight controller show the effectiveness and superiority of the proposed algorithm over traditional methods.

参考文献

[1] 杨飞生, 汪璟, 潘泉, 等.网络攻击下信息物理融合电力系统的弹性事件触发控制[J].自动化学报, 2019, 45(1):110-119. YANG F S, WANG J, PAN Q, et al.Resilient event-triggered control of grid cyber-physical systems against cyber attack[J].Acta Automatica Sinica, 2019, 45(1):110-119(in Chinese).
[2] 罗鹏, 王布宏, 李腾耀.基于BiGRU-SVDD的ADS-B异常数据检测模型[J].航空学报, 2020, 41(10):323878. LUO P, WANG B H, LI T Y.ADS-B anomaly data detection model based on BiGRU-SVDD[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(10):323878(in Chinese).
[3] LEE J, KIM J, SHIM H.Fully distributed resilient state estimation based on distributed median solver[J].IEEE Transactions on Automatic Control, 2020, 65(9):3935-3942.
[4] LU A Y, YANG G H.Switched projected gradient descent algorithms for secure state estimation under sparse sensor attacks[J].Automatica, 2019, 103:503-514.
[5] 敖伟, 宋永端, 温长云.受攻击信息物理系统的分布式安全状态估计与控制:一种有限时间方法[J].自动化学报, 2019, 45(1):174-184. AO W, SONG Y D, WEN C Y.Distributed secure state estimation and control for CPSs under sensor attacks-A finite time approach[J].Acta Automatica Sinica, 2019, 45(1):174-184(in Chinese).
[6] 肖佳平, 蒋建春, 佘春东.新息序列驱动的无人机控制系统数据攻击检测[J].控制理论与应用, 2017, 34(12):1575-1582. XIAO J P, JIANG J C, SHE C D.Data attack detection for an unmanned aerial vehicle control system using innovation sequences[J].Control Theory & Applications, 2017, 34(12):1575-1582(in Chinese).
[7] 周雪, 张皓, 王祝萍.扩展卡尔曼滤波在受到恶意攻击系统中的状态估计[J].自动化学报, 2020, 46(1):38-46. ZHOU X, ZHANG H, WANG Z P.Extended Kalman filtering in state estimation systems with malicious attacks[J].Acta Automatica Sinica, 2020, 46(1):38-46(in Chinese).
[8] LIANG Y, ZHOU D H, ZHANG L, et al.Adaptive filtering for stochastic systems with generalized disturbance inputs[J].IEEE Signal Processing Letters, 2008, 15:645-648.
[9] HU S F, ZHOU J, CHEN C.State estimation for dynamic systems with unknown process inputs and applications[J].IEEE Access, 2018, 6:14857-14869.
[10] QU D M, MA J, SUN S L.Distributed fusion filter for stochastic singular systems with unknown disturbance[C]//2010 8th World Congress on Intelligent Control and Automation.Piscataway:IEEE Press, 2010:242-247.
[11] WANG Z H, RODRIGUES M, THEILLIOL D, et al.Fault estimation filter design for discrete-time descriptor systems[J].IET Control Theory & Applications, 2015, 9(10):1587-1594.
[12] QIN Y M, LIANG Y, YANG Y B, et al.Minimum upper-bound filter of Markovian jump linear systems with generalized unknown disturbances[J].Automatica, 2016, 73:56-63.
[13] QIN Y M, LIANG Y, YANG Y B, et al.Adaptive filter of non-linear systems with generalised unknown disturbances[J].IET Radar, Sonar & Navigation, 2014, 8(4):307-317.
[14] 祁波, 孙书利.带未知通信干扰和丢包补偿的多传感器网络化不确定系统的分布式融合滤波[J].自动化学报, 2018, 44(6):1107-1114. QI B, SUN S L.Distributed fusion filtering for multi-sensor networked uncertain systems with unknown communication disturbances and compensations of packet dropouts[J].Acta Automatica Sinica, 2018, 44(6):1107-1114(in Chinese).
[15] 王占山, 张化光, 刘寅生.具有未知输入干扰的补偿控制[J].控制工程, 2005(S2):50-52. WANG Z S, ZHANG H G, LIU Y S.Compensation control with unknown input disturbances[J].Control Engineering of China, 2005(S 2):50-52(in Chinese).
[16] CHADLI M, KARIMI H R.On the robust design of unknown inputs Takagi-Sugeno observer[C]//2012 IEEE 51 st IEEE Conference on Decision and Control (CDC).Piscataway:IEEE Press, 2012:4770-4773.
[17] FIORENTINI L, SERRANI A, LONGHI S.A state-space approach to adaptive rejection of harmonic sensor disturbances in discrete-time systems[C]//2006 14th Mediterranean Conference on Control and Automation. Piscataway:IEEE Press, 2006:9189192.
[18] WANG Y G, WANG X X, PAN Q, et al.Covariance correction filter with unknown disturbance associated to system state[C]//2016 American Control Conference (ACC).Piscataway:IEEE Press, 2016:3632-3637.
[19] HSIEH C S.H-infinity Kalman estimation for rectangular descriptor systems with unknown inputs[J].IEEE Transactions on Automatic Control, 2014, 59(3):826-832.
[20] FENG X X, LI S H, PAN F.State estimate for stochastic systems with dual unknown interference inputs[J].Chinese Journal of Aeronautics, 2020, 33(9):2395-2407.
[21] LU A Y, YANG G H.Observer-based control for cyber-physical systems under denial-of-service with a decentralized event-triggered scheme[J].IEEE Transactions on Cybernetics, 2020, 50(12):4886-4895.
[22] LIU S, LI S B, XU B G.Event-triggered resilient control for cyber-physical system under denial-of-service attacks[J].International Journal of Control, 2020, 93(8):1907-1919.
[23] SHOUKRY Y, TABUADA P.Event-triggered state observers for sparse sensor noise/attacks[J].IEEE Transactions on Automatic Control, 2016, 61(8):2079-2091.
[24] 汪咬元.量测方程中含有未知参向量的线性离散时间系统的最优控制[J].数学杂志, 1995(4):523-529. WANG Y Y.The optimal control of the linear discrete-time system for the measurement eouation containing the unknown parameter vector[J].Journal of Mathematics, 1995(4):523-529(in Chinese).
[25] 傅惠民, 吴云章, 娄泰山, 等.自校准Kalman滤波方法[J].航空动力学报, 2014, 29(6):1363-1368. FU H M, WU Y Z, LOU T S, et al.Self-calibration Kalman filter method[J].Journal of Aerospace Power, 2014, 29(6):1363-1368(in Chinese).
[26] 胡志坤, 孙岩, 姜斌, 等.一种基于最优未知输入观测器的故障诊断方法[J].自动化学报, 2013, 39(8):1225-1230. HU Z K, SUN Y, JIANG B, et al.An optimal unknown input observer based fault diagnosis method[J].Acta Automatica Sinica, 2013, 39(8):1225-1230(in Chinese).
[27] LI Q, SHEN B, WANG Z D, et al.Synchronization control for A class of discrete time-delay complex dynamical networks:A dynamic event-triggered approach[J].IEEE Transactions on Cybernetics, 2019, 49(5):1979-1986.
[28] GE X H, HAN Q L, WANG Z D.A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks[J].IEEE Transactions on Cybernetics, 2019, 49(1):171-183.
[29] HU J, WANG Z D, GAO H J.Joint state and fault estimation for time-varying nonlinear systems with randomly occurring faults and sensor saturations[J] Automatica, 2018, 97:150-160.
[30] CHEN J, PATTON R J.Optimal filtering and robust fault diagnosis of stochastic systems with unknown disturbances[J].IEE Proceedings-Control Theory and Applications, 1996, 143(1):31-36.
[31] BEN HMIDA F, KHÉMIRI K, RAGOT J, et al.Three-stage Kalman filter for state and fault estimation of linear stochastic systems with unknown inputs[J].Journal of the Franklin Institute, 2012, 349(7):2369-2388.
文章导航

/