材料工程与机械制造

织构化表面对异质金属润湿性及界面反应的影响

  • 杨瑾 ,
  • 刘志杨 ,
  • 赵一璇 ,
  • 刘红兵 ,
  • 于治水
展开
  • 1. 上海工程技术大学 材料工程学院, 上海 201620;
    2. 上海激光先进制造协同创新中心, 上海 201620

收稿日期: 2020-12-28

  修回日期: 2021-01-15

  网络出版日期: 2021-04-27

基金资助

国家自然科学基金(51805315)

Effect of textured surface on wettability and interfacial reaction of heterogeneous metals

  • YANG Jin ,
  • LIU Zhiyang ,
  • ZHAO Yixuan ,
  • LIU Hongbing ,
  • YU Zhishui
Expand
  • 1. School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
    2. Shanghai Collaborative Innovation Center of Laser Advanced manufacturing Technology, Shanghai 201620, China

Received date: 2020-12-28

  Revised date: 2021-01-15

  Online published: 2021-04-27

Supported by

National Natural Science Foundation of China (51805315)

摘要

不锈钢与铝合金广泛应用于火箭贮箱中隧道管与补偿器的焊接,熔钎焊已成为其主要连接方式,但接头存在低应力开裂,容易引起燃料泄漏等问题。为提高接头可靠性,首先采用超快激光加工技术在不锈钢表面烧蚀制备了微槽和微坑两种典型的织构化表面。然后,通过铝合金在不锈钢表面的原位润湿铺展试验研究了两种微织构对润湿铺展方向、接触角和界面反应产物的影响。试验结果表明铝合金具有沿微槽加工方向润湿铺展的趋势,而微坑的铺展则接近圆形;在微槽表面表现出更小的接触角,同时基于Wenzel方程对在两种表面润湿铺展的接触角进行数值计算,计算结果略大于实际结果。最后,分析了界面冶金反应对润湿铺展的影响。结果表明界面反应对铝合金的润湿铺展具有一定的促进作用,但过于粗大的界面反应产物则会阻碍润湿铺展。该激光织构化的方法不仅可用于不锈钢与铝合金体系,还可用于航空航天领域中其他金属与金属、金属与非金属之间的连接。

本文引用格式

杨瑾 , 刘志杨 , 赵一璇 , 刘红兵 , 于治水 . 织构化表面对异质金属润湿性及界面反应的影响[J]. 航空学报, 2022 , 43(3) : 425166 -425166 . DOI: 10.7527/S1000-6893.2021.25166

Abstract

Stainless steel and aluminum alloy are widely used in welding of tunnel tubes and compensators in rocket storage tanks.Fusion brazing has become the main connection method, but the joints obtained by fusion brazing suffers from low stress cracks, which can easily cause fuel leakage and other problems.To improve the reliability of the joint, this study used ultrafast laser processing to ablate the surface of stainless steel, and prepared two typical textured surfaces:micro-groove and micro-pit surfaces.Through the in-situ wetting test of aluminum alloy on the surface of stainless steel, the influence of two micro-textures on the wetting and spreading direction, contact angle and interface reaction products was studied.The results show that the aluminum alloy exhibits a tendency of wetting and spreading along the processing direction of the micro-grooves, while the spreading of the micro-pits is close to a circle.On the micro-grooves' surface shows a smaller contact angle.Based on the Wenzel equation, the contact angles on the two micro-textured surfaces are calculated numerically, and the calculated results are slightly larger than the actual results.Finally, the influence of the interfacial metallurgical reaction on the wetting and spreading of the material's surface is analyzed.The results show that the interfacial reaction can accelerate the wetting and spreading processes and promote the wettability to a certain extent, but excessively coarse interface reaction products will hinder the wetting and spreading process.The laser texturing method can be used not only for stainless steel and aluminum alloy systems, but also for connections between other metals, and between metals and non-metals in the aerospace field.

参考文献

[1] 杨广峰, 路梦柯, 薛安源, 等.基于三维格子Boltzmann铝点蚀动态数值模拟[J].航空学报, 2020, 41(10):423582. YANG G F, LU M K, XUE A Y, et al.Dynamic numerical simulation of aluminum pitting based on 3D-lattice Boltzmann method[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(10):423582(in Chinese).
[2] 石文泽, 陈巍巍, 卢超, 等.高温铝合金电磁超声检测回波特性及因素分析[J].航空学报, 2020, 41(12):423854. SHI W Z, CHEN W W, LU C, et al.Characteristics and factor analyses for electromagnetic ultrasonic detection echoes in high-temperature aluminum alloy[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(12):423854(in Chinese).
[3] 张俊苗, 聂宏, 薛彩军, 等.铝合金焊接接头预腐蚀强度特性及预测[J].航空学报, 2013, 34(9):2161-2168. ZHANG J M, NIE H, XUE C J, et al.Properties and prediction of pre-corrosion strength of aluminum alloy welded joints[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2161-2168(in Chinese).
[4] 吴懿娟, 晁代义, 姜建堂.形变热处理对铝合金晶粒尺寸的影响[J].热处理技术与装备, 2016, 37(5):60-64. WU Y J, CHAO D Y, JIANG J T.The effect of thermo-mechanical treatment on grain size of aluminum alloy[J].Heat Treatment Technology and Equipment, 2016, 37(5):60-64(in Chinese).
[5] 赵耀邦, 徐爱杰, 姜勇, 等.激光焊接技术研究进展及其在航天领域的应用[J].航天制造技术, 2013(3):55-58. ZHAO Y B, XU A J, JIANG Y, et al.Technology of laser welding-Recent advances of research and application in aerospace[J].Aerospace Manufacturing Technology, 2013(3):55-58(in Chinese).
[6] WAKUDA M, YAMAUCHI Y, KANZAKI S, et al.Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact[J].Wear, 2003, 254(3-4):356-363.
[7] ZHANG Z Q, WANG H D, XU B S, et al.Investigation on influence of WC-Ni addition on rolling contact fatigue behavior of plasma sprayed Ni-based alloy coating[J].Tribology International, 2015, 90:509-518.
[8] 何霞, 李梦媛, 王国荣, 等.牙轮钻头轴承表面织构三种加工方法对比分析[J].表面技术, 2018, 47(3):28-35. HE X, LI M Y, WANG G R, et al.Contrastive analysis of three processing methods of roller bit bearing surface texture[J].Surface Technology, 2018, 47(3):28-35(in Chinese).
[9] 李凯, 付鹏飞, 唐代斌, 等.TC4钛合金电子束表面造型形貌及近表面组织特征[J].航空学报, 2017, 38(12):421361. LI K, FU P F, TANG D B, et al.Topography and near-surface microstructure of TC4 alloy treated by electron beam surfi-sculptTM[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(12):421361(in Chinese).
[10] 徐孟嘉, 刘博生, 毕晓阳, 等.激光加工双级结构对Al/CFRPEEK接头组织及性能的影响[J].航空学报, 2022, 43(2):624620. XU M J, LIU B S, BI X Y, et al.Effect of laser textured dual-scale structure on microstructure and mechanical property of Al/CFRPEEK joint[J].Acta Aeronauticaet Astronautica Sinica, 2022, 43(2):624620(in Chinese).
[11] 崔静, 张杭, 翟巍, 等.飞秒脉冲激光诱导TC4微结构表面抑冰特性实验[J].航空学报, 2021, 42(6):424032. CUI J, ZHANG H, ZHAI W, et al.Experiment on ice suppression characteristics of TC4 microstructure surface induced by femtosecond pulse laser[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(6):424032(in Chinese).
[12] JIANG D F, LONG J Y, HAN J P, et al.Comprehensive enhancement of the mechanical and thermo-mechanical properties of W/Cu joints via femtosecond laser fabricated micro/nano interface structures[J].Materials Science and Engineering:A, 2017, 696:429-436.
[13] YANG J, OLIVEIRA J P, LI Y, et al.Laser techniques for dissimilar joining of aluminum alloys to steels:A critical review[J].Journal of Materials Processing Technology, 2022, 301:117443.
[14] VOROBYEV A Y, GUO C L.Laser turns silicon superwicking[J].Optics Express, 2010, 18(7):6455-6460.
[15] 吴先福, 白弋枫, 赵洪波, 等.飞秒激光制备航空用铝靶材表面润湿功能微纳结构的研究[J].长春理工大学学报(自然科学版), 2016, 39(5):25-29, 50. WU X F, BAI Y F, ZHAO H B, et al.Femtosecond laser fabricate wetting function micro-and nanostructure on aerial aluminum alloys surface[J].Journal of Changchun University of Science and Technology (Natural Science Edition), 2016, 39(5):25-29, 50(in Chinese).
[16] 王心成, 傅莉.激光加工表面微结构对钎料成分设计及润湿性能的影响研究[C]//第22届全国钎焊及特种连接技术交流会论文集.西安:[s.n.], 2018:77-81. WANG X C, FU L.The influence of surface micro-structure of laser machining on composition design and wettability of filler metal[C]//Proceedings of the 22nd National Brazing and Special Connection Technology Exchange Meeting.Xi'an:[s.n.], 2018:77-81(in Chinese).
[17] TAN C W, SU J H, FENG Z W, et al.Laser joining of CFRTP to titanium alloy via laser surface texturing[J].Chinese Journal of Aeronautics, 2021, 34(5):103-114.
[18] YOUNG T.III.An essay on the cohesion of fluids[J].Philosophical Transactions of the Royal Society of London, 1805, 95:65-87.
[19] WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial & Engineering Chemistry, 1936, 28(8):988-994.
[20] CASSIE A B D.Contact angle hysteresis on heterogeneous surface[J].Discussions of the Faraday Society, 1948, 1(3):11-16.
[21] 靳鹏, 林巧力, 曹睿, 等.4043/6061铝合金-Q235钢的反应润湿行为与前驱膜形成机制[J].中国表面工程, 2016, 29(5):116-121. JIN P, LIN Q L, CAO R, et al.Reactive wetting behavior of Q235 steel by molten 4043/6061 Al alloys and formation mechanism of precursor film[J].China Surface Engineering, 2016, 29(5):116-121(in Chinese).
[22] HAMMOUTI S, HOLYBEE B, CHRISTENSON M, et al.Wetting of liquid lithium on fusion-relevant materials microtextured by femtosecond laser exposure[J].Journal of Nuclear Materials, 2018, 508:237-248.
[23] ROULIN M, LUSTER J, KARADENIZ G, et al.Strength and structure of furnace-brazed joints between aluminum and stainless steel[J].Welding Research, 1999, 78(S):151-155.
[24] 朱毅.表面微观特征对液滴润湿状态及气液界面稳定性的影响[D].北京:清华大学, 2017:65-74. ZHU Y.Influences by surface microscopic characteristics on droplet wetting state and stability of gas-liquid interface[D].Beijing:Tsinghua University, 2017:65-74(in Chinese).
[25] 林巧力.金属熔体在碳化物陶瓷上的润湿性及铺展动力学[D].长春:吉林大学, 2011:111-116. LIN Q L.Wettability and spreading dynamics of carbide ceramics by molten metals[D].Changchun:Jilin University, 2011:111-116(in Chinese).
[26] EUSTATHOPOULOS N, NICOLAS M G, DREVET B.Wettability at high temperatures[M].Amsterdam:Elsevier, 1999.
[27] LANDRY K, EUSTATHOPOULOS N.Dynamics of wetting in reactive metal/ceramic systems:Linear spreading[J].Acta Materialia, 1996, 44(10):3923-3932.
[28] 马国峰, 张鸿龄, 孙俪娜, 等.Bi-Sn熔体在高熵合金上的润湿行为及界面特征[J].稀有金属材料与工程, 2018, 47(8):2500-2505. MA G F, ZHANG H L, SUN L N, et al.Wetting behavior and interfacial characteristics in the molten Bi-Sn/high-entropy alloy system[J].Rare Metal Materials and Engineering, 2018, 47(8):2500-2505(in Chinese).
[29] 孙建新.Sn(Bi)熔体在亚稳BNi-2和Fe78B13Si9合金上的润湿性及界面结构[D].长春:吉林大学, 2010:21-35. SUN J X.Wettability of metastable BNi-2 and Fe78B13Si9 alloys by molten Sn (Bi) and their interfacial microstructures[D].Changchun:Jilin University, 2010:21-35(in Chinese).
[30] ZHAO H, WANG H Q, SEKULIC D P, et al.Spreading kinetics of liquid solders over an intermetallic solid surface.Part 1:Eutectic lead solder[J].Journal of Electronic Materials, 2009, 38(9):1838-1845.
[31] 林三宝, 宋建岭, 杨春利, 等.铝合金/不锈钢钨极氩弧熔-钎焊接头界面层的微观结构分析[J].金属学报, 2009, 45(10):1211-1216. LIN S B, SONG J L, YANG C L, et al.Microstructure analysis of interfacial layer with tungsten inert gas welding-brazing joint of aluminum alloy/stainless steel[J].Acta Metallurgica Sinica, 2009, 45(10):1211-1216(in Chinese).
[32] LIU Z Y, YANG J, LI Y L, et al.Wetting and spreading behaviors of Al-Si alloy on surface textured stainless steel by ultrafast laser[J].Applied Surface Science, 2020, 520:146316.
文章导航

/