固体力学与飞行器总体设计

复合材料整流罩减振降噪的动力吸振器设计

  • 李航行 ,
  • 胡迪科 ,
  • 吴邵庆
展开
  • 1. 东南大学 工程力学系, 南京 211189;
    2. 上海宇航系统工程研究所, 上海 201109;
    3. 东南大学 江苏省空天机械装备工程研究中心, 南京 211189

收稿日期: 2021-01-11

  修回日期: 2021-02-21

  网络出版日期: 2021-02-24

基金资助

江苏省优秀青年基金(BK20180062);江苏省"六大人才高峰"高层次人才项目(B类)(KTHY-005);上海航天科技创新基金(SAST2018-025)

Optimization design of dynamic vibration absorbers for vibration and noise reduction of composite fairing

  • LI Hangxing ,
  • HU Dike ,
  • WU Shaoqing
Expand
  • 1. Department of Engineering Mechanics, Southeast University, Nanjing 211189, China;
    2. Aerospace System Engineering Shanghai, Shanghai 201109, China;
    3. Jiangsu Engineering Research Center of Aerospace Machinery, Southeast University, Nanjing 211189, China

Received date: 2021-01-11

  Revised date: 2021-02-21

  Online published: 2021-02-24

Supported by

Jiangsu Excellent Youth Fund (BK20180062); Jiangsu Province "Six Talent Peaks" High-level Talent Project (B Type)(KTHY-005); Shanghai Aerospace Science and Technology Innovation Fund (SAST2018-025)

摘要

运载火箭整流罩的隔声性能设计对内部设备的选型、试验和安全运行至关重要。为改善整流罩内低频声振环境,提高整流罩低频段隔声性能,首先,针对复合材料整流罩结构开展力学等效建模;其次,提出一种基于基变换模态空间内降维理论,解决了考虑多模态耦合的动力吸振器(DVA)设计问题;最后,基于整流罩等效力学模型开展了动力吸振器位置及材料参数的优化设计。针对某型复合材料整流罩开展仿真研究,验证新方法的有效性。结果表明:针对某型质量为1 177.3 kg的整流罩模型,添加总质量为14.6 kg的动力吸振器之后,0~100 Hz频段内声功率级均方根(RMS)值从254.8 dB降至238.8 dB,设计频段内声振响应被有效控制,声振环境得到改善。

本文引用格式

李航行 , 胡迪科 , 吴邵庆 . 复合材料整流罩减振降噪的动力吸振器设计[J]. 航空学报, 2022 , 43(5) : 225249 -225249 . DOI: 10.7527/S1000-6893.2021.25249

Abstract

The sound insulation design of the fairing on rockets is important for the model selection, tests and safe operation of the internal equipment. To improve the vibro-acoustic environment and the sound insulation performance of the fairing, we first conduct the equivalent mechanical modelling of the composite fairing. Then, based on the basis changes, the dimension reduction method is proposed in the modal space to optimize the Dynamic Vibration Absorber (DVA) by considering the coupled modes. Finally, the optimization design for the location and material parameters of dynamic vibration absorbers is performed based on the equivalent mechanical modelling of the fairing. Numerical simulations are conducted on a composite fairing to verify the proposed method. Results of the fairing with a total mass of 1 177.3 kg show that under the constraint of the additional mass, the Root Mean Square (RMS) value of the sound power level in the frequency band 0-100 Hz is reduced from 254.8 dB to 238.8 dB after the addition of the dynamic vibration absorbers with a total mass of 14.6 kg. The vibration and noise level in the designed frequency band is significantly reduced and the vibro-acoustic environment is improved.

参考文献

[1] 李强, 董光旭, 张希农, 等. 新型可调动力吸振器设计及参数优化[J]. 航空学报, 2018, 39(6):221721. LI Q, DONG G X, ZHANG X N, et al. Design and parameter optimization of a new tunable dynamic vibration absorber[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):221721(in Chinese).
[2] 田源, 葛浩, 卢明辉, 等. 声学超构材料及其物理效应的研究进展[J]. 物理学报, 2019, 68(19):7-18. TIAN Y, GE H, LU M H, et al. Research advances in acoustic metamaterials[J]. Acta Physica Sinica, 2019, 68(19):7-18(in Chinese).
[3] WEN Y P, SUN Q, ZOU Y, et al. Study on the vibration suppression of a flexible carbody for urban railway vehicles with a magnetorheological elastomer-based dynamic vibration absorber[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2020, 234(7):749-764.
[4] LIU H P, ZHU D M. Controlling the vibration and noise of a ballasted track using a dynamic vibration absorber with negative stiffness[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2020, 234(10):1265-1274.
[5] 林武斌, 滕汉东. 动力吸振在输油泵机组垂向减振中的应用研究[J]. 振动与冲击, 2020, 39(12):289-293. LIN W B, TENG H D. Application of dynamic vibration absorbers in the vertical vibration reduction of oil pump unit[J]. Journal of Vibration and Shock, 2020, 39(12):289-293(in Chinese).
[6] 殷红, 董康立, 彭珍瑞. 基于VMD-SSI的结构模态参数识别[J]. 振动与冲击, 2020, 39(10):81-91. YIN H, DONG K L, PENG Z R. Structural modal parameter identification based on VMD-SSI[J]. Journal of Vibration and Shock, 2020, 39(10):81-91(in Chinese).
[7] ZHU X Z, CHEN Z B, JIAO Y H. Optimizations of distributed dynamic vibration absorbers for suppressing vibrations in plates[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37(4):1188-1200.
[8] 徐胜今, 孔宪仁, 王本利, 等. 正交异性蜂窝夹层板动、静力学问题的等效分析方法[J]. 复合材料学报, 2000, 17(3):92-95. XU S J, KONG X R, WANG B L, et al. Mehtod of equivalent analysis for statics and dynamics behavior of orthotropic honeycomb sandwich plates[J]. Acta Materiae Compositae Sinica, 2000, 17(3):92-95(in Chinese).
[9] 富明慧, 徐欧腾, 陈誉. 蜂窝芯层等效参数研究综述[J]. 材料导报, 2015, 29(5):127-134. FU M H, XU O T, CHEN Y. Anoverview of equivalent parameters of honeycomb cores[J]. Materials Review, 2015, 29(5):127-134(in Chinese).
[10] 李贤冰, 温激鸿, 郁殿龙, 等. 蜂窝夹层板力学等效方法对比研究[J]. 玻璃钢/复合材料, 2012(S1):11-15. LI X B, WEN J H, YU D L, et al. The comparative study of equivalent mechanical methods on honeycomb sandwich plate[J]. Fiber Reinforced Plastics/Composites, 2012(S1):11-15(in Chinese).
[11] 尤泰文, 周劲松, 孙维光, 等. 多重动力吸振器对高速列车地板振动的控制[J]. 同济大学学报(自然科学版), 2020, 48(4):583-590. YOU T W, ZHOU J S, SUN W G, et al. Floor local vibration control of high speed trains by using multiple dynamic vibration absorbers[J]. Journal of Tongji University (Natural Science), 2020, 48(4):583-590(in Chinese).
[12] 背户一登. 动力吸振器及其应用[M]. 任明章,译.北京:机械工业出版社, 2013. Kazuto S. Dynamic vibration absorber and its application[M]. REN M Z, translated. Beijing:China Machine Press, 2013.
[13] JIANG D, ZHANG D H, FEI Q G, et al. An approach on identification of equivalent properties of honeycomb core using experimental modal data[J]. Finite Elements in Analysis and Design, 2014, 90:84-92.
[14] 姜东, 费庆国, 吴邵庆. 基于区间分析的不确定性结构动力学模型修正方法[J]. 振动工程学报, 2015, 28(3):352-358. JIANG D, FEI Q G, WU S Q. Updating of structural dynamics model with uncertainty based on interval analysis[J]. Journal of Vibration Engineering, 2015, 28(3):352-358(in Chinese).
[15] FAHY F, GARDONIO P. Sound and structural vibration-Radiation, transmission and response[J]. Noise Control Engineering Journal, 2007, 55(3):373-374.
[16] 尹健, 吴邵庆, 陈树海. 星箭连接界面处环形分布动载荷识别[J]. 宇航学报, 2019, 40(12):1393-1402. YIN J, WU S Q, CHEN S H. Identification ofannularly distributed dynamic load at interface between satellite and rocket[J]. Journal of Astronautics, 2019, 40(12):1393-1402(in Chinese).
[17] WU S Q, ZHENG Y, SUN Y W, et al. Identify the stochastic dynamic load on a complex uncertain structural system[J]. Mechanical Systems and Signal Processing, 2021, 147:107114.
[18] 孙燕伟, 吴邵庆, 李彦斌, 等. 不确定性动力学系统上随机载荷识别改进算法[J]. 振动工程学报, 2019, 32(2):206-214. SUN Y W, WU S Q, LI Y B, et al. An improved algorithmfor stochastic load identification for random system[J]. Journal of Vibration Engineering, 2019, 32(2):206-214(in Chinese).
[19] BARREDO E, MENDOZA LARIOS J G, COLÍN J, et al. A novel high-performance passive non-traditional inerter-based dynamic vibration absorber[J]. Journal of Sound and Vibration, 2020, 485:115583.
[20] HUA Y Y, WONG W, CHENG L. Optimal design of a beam-based dynamic vibration absorber using fixed-points theory[J]. Journal of Sound and Vibration, 2018, 421:111-131.
文章导航

/