电子电气工程与控制

基于短基线传感器阵列的炮弹被动测向算法

  • 屈秉男 ,
  • 蒋平 ,
  • 赵鲁阳 ,
  • 李凤荣 ,
  • 王营冠
展开
  • 1. 中国科学院 上海微系统与信息技术研究所 中国科学院无线传感网与通信重点实验室, 上海 201800;
    2. 中国科学院大学, 北京 100049;
    3. 上海科技大学 信息科学与技术学院, 上海 201210

收稿日期: 2020-12-22

  修回日期: 2021-01-11

  网络出版日期: 2021-02-24

基金资助

中国科学院重点部署项目(KFJ-STS-ZDTP-089)

Passive direction finding algorithm of projectile based on short baseline sensor array

  • QU Bingnan ,
  • JIANG Ping ,
  • ZHAO Luyang ,
  • LI Fengrong ,
  • WANG Yingguan
Expand
  • 1. Key Laboratory of Wireless Sensor Network and Communication, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 201800, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. School of Information Science and Technology, Shanghai Tech University, Shanghai 201210, China

Received date: 2020-12-22

  Revised date: 2021-01-11

  Online published: 2021-02-24

Supported by

Key Research Program of the Chinese Academy Sciences (KFJ-STS-ZDTP-089)

摘要

针对现有基于角度估计的无源被动探测技术不能满足远场高精度目标测向的问题,及现有被动探测传感器阵列在战场中需要大规模环绕布设的限制,采用基于经验模态分解(EMD)和短时能量特性分析的瑞雷波提取方法,结合时延双曲线定位模型提出免受波速影响的短基线传感器阵列被动测向方法。首先,在对传感器阵列获取的地震动信号进行信号特性分析基础上,基于EMD构建自适应分解去噪模型,提出基于信号短时能量特性的瑞雷波成分的抽取方法。其次,在对瑞雷波进行联合相关计算估计时延基础上,构建基于TDOA算法的时延双曲线模型,并提出基于四元十字短基线传感器阵列的DFA-WV算法,实现免受波速影响的炮弹信号高精度测向。最后,本文算法模型在仿真及靶场实弹试验得到验证,测试结果表明提取瑞雷波算法可为时延高准度估计提供效力,DFA-WV测向算法因摆脱波速估计值对测向结果的影响,相较于Chan算法及改进MPR算法具有更优的测向性能,且计算复杂度低,在实际野外靶场炮弹目标测向中具有工程应用价值。

本文引用格式

屈秉男 , 蒋平 , 赵鲁阳 , 李凤荣 , 王营冠 . 基于短基线传感器阵列的炮弹被动测向算法[J]. 航空学报, 2022 , 43(3) : 325139 -325139 . DOI: 10.7527/S1000-6893.2021.25139

Abstract

Existing non-source passive detection technologies based on angle estimation cannot meet the requirement for high-precision target direction finding in the far field, and existing passive detection sensor arrays are limited by requirement for large-scale surround deployment in the battlefield. To overcome these problems, a passive direction finding method, which is unaffected by the wave velocity, is proposed based on the short baseline sensor array, by combing the Rayleigh wave extraction method based on Empirical Mode Decomposition (EMD) and short-term energy characteristic analysis and the time delay hyperbolic positioning model. First, after analyzing the signal characteristics of the ground motion signals obtained by the sensor array, an adaptive decomposition and denoising model is constructed based on EMD, and a method for extracting Rayleigh wave components is proposed based on short-term energy characteristics of the signal. Second, based on the estimated time delay of wave joint correlation calculation, a time delay hyperbolic model is constructed based on the TDOA algorithm, and a DFA-WV algorithm based on the four-element cross short baseline sensor array is proposed to realize high-precision direction finding of the projectile signal without wave velocity estimation. Finally, the algorithm model proposed is verified in simulation and live-fire tests at the range. The results show that the Rayleigh wave extraction method proposed can provide high precision estimation of time delay, and the DFA-WV direction finding algorithm can eliminate the influence of estimation of wave velocity on direction finding results. Compared to the Chan algorithm and the improved MPR algorithm, the method proposed has higher direction finding performance and low computational complexity, and is thus applicable in projectile target direction finding in the actual field range.

参考文献

[1] 谢娟, 魏智, 赵鲁阳, 等. 基于自适应动态测距的室内定位算法[J]. 电子设计工程, 2018, 26(6):22-27. XIE J, WEI Z, ZHAO L Y, et al. Indoor localization algorithm based on self-adaptively dynamic ranging[J]. Electronic Design Engineering, 2018, 26(6):22-27(in Chinese).
[2] CHOWDHURY T J S, ELKIN C, DEVABHAKTUNI V, et al. Advances on localization techniques for wireless sensor networks:A survey[J]. Computer Networks, 2016, 110:284-305.
[3] 李建中, 高宏. 无线传感器网络的研究进展[J]. 计算机研究与发展, 2008, 45(1):1-15. LI J Z, GAO H. Survey on sensor network research[J]. Journal of Computer Research and Development, 2008, 45(1):1-15(in Chinese).
[4] 王福豹, 史龙, 任丰原. 无线传感器网络中的自身定位系统和算法[J]. 软件学报, 2005, 16(5):857-868. WANG F B, SHI L, REN F Y. Self-localization systems and algorithms for wireless sensor networks[J]. Journal of Software, 2005, 16(5):857-868(in Chinese).
[5] 蒋俊正, 李杨剑, 赵海兵, 等. 一种大规模传感器网络节点分布式定位算法[J]. 电子与信息学报, 2019, 41(12):3022-3028. JIANG J Z, LI Y J, ZHAO H B, et al. A distributed node localization algorithm for large scale sensor networks[J]. Journal of Electronics & Information Technology, 2019, 41(12):3022-3028(in Chinese).
[6] 张洪喆, 王福豹, 段渭军. 基于WSN的炮弹着地点定位系统的研究[J]. 现代电子技术, 2011, 34(7):16-18, 22. ZHANG H Z, WANG F B, DUAN W J. Research on WSN-based locating system of cannonball falling point[J]. Modern Electronics Technique, 2011, 34(7):16-18, 22(in Chinese).
[7] 李鹏宇, 车录锋, 郑春雷. 无需预先测速的靶场弹丸落点定位算法实现[J]. 电子与信息学报, 2017, 39(2):322-327. LI P Y, CHE L F, ZHENG C L. Landing point location algorithm without velocity measurement in target range[J]. Journal of Electronics & Information Technology, 2017, 39(2):322-327(in Chinese).
[8] MCCLOUD M L, SCHARF L L. A new subspace identification algorithm for high-resolution DOA estimation[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(10):1382-1390.
[9] TANGY T, XU S, WANG X, et al. Direction of arrival estimation with antenna arrays based on fuzzy cerebellar model articulation controller neural network[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30(9):1-12.
[10] EGHBALI Y, FERDOSIZADE NAEINY M. Off-grid DoA estimation method of wideband signals[J]. International Journal of Communication Systems, 2020, 33(14):e4466.
[11] LI P Y, CHE L F. Landing point location algorithm based on asynchronous time difference of arrival (ATDOA) method[J]. Microsystem Technologies, 2017, 23(5):1475-1484.
[12] DENG Z L, WANG H H, ZHENG X, et al. A closed-form localization algorithm and GDOP analysis for multiple TDOAs and single TOA based hybrid positioning[J]. Applied Sciences, 2019, 9(22):4935.
[13] WANG Y, HO K C. TDOA positioning irrespective of source range[J]. IEEE Transactions on Signal Processing, 2017, 65(6):1447-1460.
[14] LI N, GE M C, WANG E Y. Two types of multiple solutions for microseismic source location based on arrival-time-difference approach[J]. Natural Hazards, 2014, 73(2):829-847.
[15] QU X M, XIE L H. An efficient convex constrained weighted least squares source localization algorithm based on TDOA measurements[J]. Signal Processing, 2016, 119:142-152.
[16] ZHENG Z, ZHANG H W, WANG W Q, et al. Source localization using TDOA and FDOA measurements based on semidefinite programming and reformulation linearization[J]. Journal of the Franklin Institute, 2019, 356(18):11817-11838.
[17] ZHU G H, FENG D Z, XIE H, et al. An approximately efficient bi-iterative method for source position and velocity estimation using TDOA and FDOA measurements[J]. Signal Processing, 2016, 125:110-121.
[18] YIN J H, WAN Q, YANG S W, et al. A simple and accurate TDOA-AOA localization method using two stations[J]. IEEE Signal Processing Letters, 2016, 23(1):144-148.
[19] SUN Y M, HO K C, WAN Q. Algebraic solution for tdoa localization in modified polar representation[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway:IEEE Press, 2019:4380-4384.
[20] LI J, HE M M, CUI G F, et al. A novel method of seismic signal detection using waveform features[J]. Applied Sciences, 2020, 10(8):2919.
[21] 高启栋, 卢文波, 杨招伟, 等. 垂直孔爆破诱发地震波的成分构成及演化规律[J]. 岩石力学与工程学报, 2019, 38(1):18-27. GAO Q D, LU W B, YANG Z W, et al. Components and evolution laws of seismic waves induced by vertical-hole blasting[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1):18-27(in Chinese).
[22] MARXIM R B B, MOHANTY A R. Time delay estimation in reverberant and low SNR environment by EMD based maximum likelihood method[J]. Measurement, 2019, 137:655-663.
[23] YII C C, ROHANI M N K H, ISA M, et al. Multi-end PD location algorithm using segmented correlation and trimmed mean data filtering techniques for MV Underground cable[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(1):92-98.
文章导航

/