材料工程与机械制造

平纹机织与2.5D机织复合材料平板弹道冲击特性对比

  • 冯振宇 ,
  • 迟琪琳 ,
  • 崔怀天 ,
  • 解江 ,
  • 牟浩蕾
展开
  • 1. 中国民航大学 安全科学与工程学院, 天津 300300;
    2. 中国民航大学 民航航空器适航审定技术重点实验室, 天津 300300

收稿日期: 2020-12-16

  修回日期: 2021-01-04

  网络出版日期: 2021-02-24

基金资助

航空科学基金(201941067001)

Comparison of ballistic impact behaviors between plain woven and 2.5D woven fabric composite plates

  • FENG Zhenyu ,
  • CHI Qilin ,
  • CUI Huaitian ,
  • XIE Jiang ,
  • MU Haolei
Expand
  • 1. College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China;
    2. Key Laboratory of Civil Aircraft Airworthiness Technology, Civil Aviation Administration of China, Tianjin 300300, China

Received date: 2020-12-16

  Revised date: 2021-01-04

  Online published: 2021-02-24

Supported by

Aeronautical Science Foundation of China (201941067001)

摘要

为研究碳纤维平纹机织和碳纤维2.5D机织复合材料平板的弹道冲击响应及失效模式,在空气炮装置上使用圆柱弹体对其进行了弹道冲击试验。通过弹道极限速度、吸能总量、单位面密度吸能量和单位厚度吸能量等指标评估其弹道冲击特性,并采用超声C扫描和CT扫描唯象分析其冲击损伤。结果表明:在等厚度下,碳纤维平纹机织复合材料平板与碳纤维2.5D机织复合材料平板相比,展现了更优的弹道冲击性能。碳纤维平纹机织复合材料平板的主要失效模式为分层失效,碳纤维2.5D机织复合材料平板主要为剪切充塞失效。与碳纤维2.5D机织复合材料平板相比,平纹机织复合材料平板弯曲变形明显,大量的纤维拉伸失效增加了平板吸能量,提高了弹道极限速度,但分层会导致平板损伤区域大,完整性较差;碳纤维2.5D机织复合材料平板损伤区域小,完整性好。

本文引用格式

冯振宇 , 迟琪琳 , 崔怀天 , 解江 , 牟浩蕾 . 平纹机织与2.5D机织复合材料平板弹道冲击特性对比[J]. 航空学报, 2022 , 43(5) : 425116 -425116 . DOI: 10.7527/S1000-6893.2021.25116

Abstract

To research the ballistic impact response and failure modes of carbon fiber plain woven and 2.5D woven fabric composite plates, ballistic impact tests were conducted in the gas gun employing the cylindrical projectile. The ballistic impact behavior was evaluated based on the ballistic limit velocity, total energy absorption, energy absorption per surface density, and energy absorption per thickness, and the impact damage was further analyzed by ultrasonic C-scan and CT scan. The results show that the plain woven fabric composite plates exhibit better ballistic impact performance than the 2.5D woven fabric composite plates. The plain woven fabric composite plates mainly produced delamination failure. The 2.5D woven fabric composite plates mainly produced shear stuffing failure. Compared with the 2.5D woven composite plates, the plain woven composite plates were bent and deformed obviously. A large number of fiber tensile failures caused by bending increased the energy absorption of the plate and increase the ballistic limit velocity. But the delamination led to large damage area and poor integrity of the plain woven composite plates. The 2.5D woven fabric composite plates had smaller damage area and better integrity.

参考文献

[1] 纪双英, 王晋, 邢军, 等. 国外航空发动机风扇包容机匣研究进展[J]. 航空制造技术, 2010(14):44-46, 48. JI S Y, WANG J, XING J,et al. Research development of containment casing of aeroengine fan abroad[J]. Aeronautical Manufacturing Technology, 2010(14):44-46, 48(in Chinese).
[2] 中国民用航空总局. 航空发动机适航规定:CCAR33-R1[S]. 北京:中国民用航空总局, 2005:105. Civil Aviation Administration of China. Aero engine airworthiness regulations of china civil aviation regulations:CCAR33-R1[S]. Beijing:Civil Aviation Administration of China, 2005:105.
[3] 何庆, 宣海军, 刘璐璐. 某型发动机一级风扇机匣包容性数值仿真[J]. 航空动力学报, 2012, 27(2):295-300. HE Q, XUAN H J, LIU L L. Numericalanalysis of real aero-engine first-stage fan blade containment[J]. Journal of Aerospace Power, 2012, 27(2):295-300(in Chinese).
[4] ROBERTS G D, REVILOCK D M, BINIENDA W K, et al. Impact testing and analysis of composites for aircraft engine fan cases[J]. Journal of Aerospace Engineering, 2002, 15(3):104-110.
[5] SHARDA J, DEENADAYALU C, MOBASHER B, et al. Modeling of multilayer composite fabrics for gas turbine engine containment systems[J]. Journal of Aerospace Engineering, 2006, 19(1):38-45.
[6] STAHLECKER Z, MOBASHER B. Development of reliable modeling methodologies for engine fan blade out containment analysis. Part II:Finite element analysis[J]. International Journal of Impact Engineering, 2009, 36(3):447-459.
[7] NAIK D, SANKARAN S, MOBASHER B, et al. Development of reliable modeling methodologies for fan blade out containment analysis. Part I:Experimental studies[J]. International Journal of Impact Engineering, 2009, 36(1):1-11.
[8] BINIENDA W, SANCAKTAR E, ROBERTS G D. Design, progressive modeling, manufacture, and testing of composite shield for turbine engine blade containment:NASA 20020036226[R]. Washington, D.C.:NASA, 2002.
[9] GOLDBERG R K, BLINZLER B J, BINIENDA W K. Modification of a macromechanical finite element-based model for impact analysis of triaxially braided composites[J]. Journal of Aerospace Engineering, 2010, 25(3):383-394.
[10] SUN X C, HALLETT S R. Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI):Experimental and numerical study[J]. Composites Part A:Applied Science and Manufacturing, 2018, 104:41-59.
[11] TIRILLÒ J, FERRANTE L, SARASINI F, et al. High velocity impact behaviour of hybrid basalt-carbon/epoxy composites[J]. Composite Structures, 2017, 168:305-312.
[12] 陈战辉, 万小朋, 黄文博, 等. 混杂与非混杂层合板弹丸冲击试验研究[J]. 机械科学与技术, 2019, 38(5):803-808. CHEN Z H, WAN X P, HUANG W B, et al. Experimental investigation of bullet impact damage of hybridand non-hybrid laminates[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(5):803-808(in Chinese).
[13] AHMED S, ZHENG X T, YAN L L, et al. Influence of asymmetric hybridization on impact response of 3D orthogonal woven composites[J]. Composites Science and Technology, 2020, 199:108326.
[14] WAGNER T, HEIMBS S, FRANKE F, et al. Experimental and numerical assessment of aerospace grade composites based on high-velocity impact experiments[J]. Composite Structures, 2018, 204:142-152.
[15] 胡年明, 陈长海, 侯海量, 等. 高速弹丸冲击下复合材料层合板损伤特性仿真研究[J]. 兵器材料科学与工程, 2017, 40(3):66-70. HU N M, CHEN C H, HOU H L, et al. Simulationon damage characteristic of composite laminates under high-velocity projectile impact[J]. Ordnance Material Science and Engineering, 2017, 40(3):66-70(in Chinese).
[16] 王绪财, 彭刚, 冯家臣, 等. 弹道冲击条件下芳纶织物增强复合材料靶板破坏模式及吸能研究[J]. 防护工程, 2015(3):21-25. WANG X C, PENG G, FENG J C,et al. Experimental research on the fracture pattern and energy absorbing of Kevlar fabric reinforced composite under ballistic impact[J]. Protective Engineering, 2015(3):21-25(in Chinese).
[17] 邓君. 纤维增强复合材料层合板抗冲击性试验及数值分析[D]. 南京:南京航空航天大学, 2010. DENG J. Test and numerical simulation of impact resistance of fiber reinforced[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
[18] 陆晓. 碳纤维增强复合材料机匣包容性的数值仿真研究[D]. 杭州:浙江大学, 2011. LU X. Numerical simulation of carbon fiber reinforced composite aeroengine case containment[D]. Hangzhou:Zhejiang University, 2011(in Chinese).
[19] 何泽侃, 宣海军, 胡燕琪, 等. Kevlar缠绕增强机匣包容过程研究[J]. 工程力学, 2017, 34(增刊1):308-313. HE Z K, XUAN H J, HU Y Q, et al. Investigation on containment process of case wrapped with Kevlar fabric[J]. Engineering Mechanics, 2017, 34(Sup. 1):308-313(in Chinese).
[20] 刘璐璐, 宣海军, 张娜. 航空发动机复合材料机匣叶片包容性研究[J]. 工程力学, 2013, 30(增刊1):314-319. LIU L L, XUAN H J, ZHANG N. Investigation on blade containment of aero-engine composite case[J]. Engineering Mechanics, 2013, 30(Sup. 1):314-319(in Chinese).
[21] XUAN H J, LIU L L, CHEN G T, et al. Impact response and damage evolution of triaxial braided carbon/epoxy composites. Part I:Ballistic impact testing[J]. Textile Research Journal, 2013, 83(16):1703-1716.
[22] LIU L L, XUAN H J, ZHANG N, et al. Impact response and damage evolution of triaxial braided carbon/epoxy composites. Part II:Finite element analysis[J]. Textile Research Journal, 2013, 83(17):1821-1835.
[23] 李明. 2.5D机织复合材料冲击后剩余强度研究[D]. 南京:南京航空航天大学, 2010. LI M. Analyses of residual strength of 2.5D woven composites after impact[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
[24] REN C L, LIU T, SIDDIQUE A, et al. High-speed visualizing and mesoscale modeling for deformation and damage of 3D angle-interlock woven composites subjected to transverse impacts[J]. International Journal of Mechanical Sciences, 2018, 140:119-132.
[25] 宋曼丽. 三维编织/机织复合材料机匣包容性研究[D]. 杭州:浙江大学, 2020. SONG M L. Research on the containment of 3D braided/woven composite casing[D]. Hangzhou:Zhejiang University, 2020(in Chinese).
文章导航

/