小型电动无人机通常采用锂电池、无刷电机和螺旋桨组成能源动力系统,飞行过程中锂电池的实际工作电压发生变化,但飞机的总重量不变,其航程航时的估算方法与传统的燃油飞机有所不同。为了准确评估动力系统对飞机设计的影响,建立了以锂电池为动力的电动飞机推进系统模型,通过与实验数据比较,验证了各部分模型的准确性。利用该动力系统模型,对某款小型电动无人机进行了航程和航时估算,结果表明本文的建模方法准确有效,航程航时估算接近实验数据,可作为小型电动无人机设计的重要参考。
Small electric UAVs usually use lithium battery, brushless motor and propeller as the energy power system. The working voltage of lithium battery decreases during the flight, but the total weight of the aircraft remains the same, that leads to the design method of battery powered UAVs is different from the traditional fuel powered aircraft. In this paper, the model of propulsion system for battery-powered aircraft is developed to accurately evaluate the influence of power system on aircraft design. Comparison with the experimental data has proved the model to be reliable. The range and endurance of a certain electric UAV are estimated by propulsion model and the results show that the modeling method in this paper is accurate and effective, which can be a reference for the design of small electric UAVs.
[1] 张建平, 任家龙, 陈晓. 基于多属性分类的民用无人机空中交通管理模式[J]. 航空计算技术, 2017(5):6-9. ZHANG J P,REN J L,CHEN X. Air traffic management mode of civil unmanned aircraft systems based on multi-attribute classification[J]. Aeronautical Computing Technique, 2017(5):6-9(in Chinese).
[2] 刘莉, 曹潇, 张晓辉, 等. 轻小型太阳能/氢能无人机发展综述[J]. 航空学报, 2020, 41(3):623474. LIU L, CAO X, ZHANG X H, et al. Review of development of light and small scale solar/hydrogen powered unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):623474(in Chinese).
[3] 雷涛,闵志豪,付红杰,等. 燃料电池无人机混合电源动态平衡能量管理策略[J].航空学报,2020,41(12):324048. LEI T,MIN Z H, FU H J, et al. Dynamic balanced energy management strategies for fuel-cell hybrid power system of unmanned air vehicle[J]. Acta Aeronautica et Astronautica Sinica,2020,41(12):324048(in Chinese).
[4] 张晓辉,刘莉,戴月领.燃料电池无人机能源管理与飞行状态耦合[J].航空学报,2019,40(7):92-108. HANG X H, LIU L,DAI Y L. Coupling effect of energy management and flight state for fuel cell powered UAVs[J].Acta Aeronautica et Astronautica Sinica,2019,40(7):222793(in Chinese).
[5] RAMYMER D P. Aircraft design:a conceptual approach[M]. Reston:AIAA, 1992.
[6] 王书礼,孙金博,康桂文,等.一种电动飞机电推进系统的能效优化方法[J].航空学报,2021,42(3):623943. WANG S L, SUN J B, KANG G W, et al. An energy efficiency optimization method for electric aircraft propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):623943(in Chinese).
[7] 王刚, 胡峪, 宋笔锋,等. 电动无人机动力系统优化设计及航时评估[J]. 航空动力学报, 2015,30(8):1834-1840. WANG G, HU Y, SONG B F, et al. Optimal design and endurance estimation of propulsion system for electric-powered unmanned aerial vehicle[J]. Journal of Aerospace Power, 2015,30(8):1834-1840(in Chinese).
[8] SU Y, LIAHNG H, WU J. Multilevel Peukert equations based residual capacity estimation method for lead-acid batteries[C]//IEEE International Conference on Sustainable Energy Technologies,2008:101-105.
[9] 段登燕,裴家涛,祖瑞,等.电机-变距螺旋桨动力系统功率优化控制[J].航空学报,2020, 41(9):523933. DUAN D Y, PEI J T, ZU R, et al. Power optimization and control of motor variable-pitch propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):523933(in Chinese).
[10] TRAUB L W. Range and endurance estimates for battery-powered aircraft[J]. Journal of Aircraft, 2011, 48(2):703-707.
[11] GONG A, VERSTRAETE D. Extending range and endurance estimates of battery powered electric aircraft[C]//AIAC16:16th Australian International Aerospace Congress,2015:225.
[12] DOERFFE D, SHARKH S A. A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries[J]. Journal of Power Sources, 2006, 155(2):395-400.
[13] TREMBLAY O, DESSAINT L A, DEKKICHE A I. A generic battery model for the dynamic simulation of hybrid electric vehicles[C]//IEEE Vehicle Power and Propulsion Conference(VPPC),2007:284-289.
[14] SHI Y, EBERHART R C. Empirical study of particle swarm optimization[M]. 2002.
[15] Dualsky. Xpower_ECO-S Lithium Battery[EB/OL]. (2018-04-05)[2020-12-10].http://cn.dualsky.com/ECO_Series/Xpower_ECO-S.shtml.
[16] LUNDSTRÖM D, AMADORI K, KRUS P. Validation of models for small scale electric propulsion systems[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2010:483.
[17] Fly Brushless Statistics. SunnySky brushless motor[EB/OL].(2018-04-07)[2020-12-10]. http://www.flybrushless.com/search/manufacturer/SunnySky.
[18] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京:北京航空航天大学出版社, 2006. LIU P Q.Air propeller theory and its application[M].Beijing:Beihang University Press,2006(in Chinese).
[19] BRANT J, SELIG M. Propeller performance data at low reynolds numbers[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011.
[20] DETERS R W, ANANDA KRISHNAN G K, SELIG M S. Reynolds number effects on the performance of small-scale propellers[C]//32nd AIAA Applied Aerodynamics Conference. Reston:AIAA, 2014.
[21] Fly Brushless Statistics. SunnySky brushless motor x2814-8 test data[EB/OL].[2018-04-07] [2020-12-10]. http://www.flybrushless.com/motor/view/606.
[22] OSTLER J, BOWMAN W. Flight testing of small, electric powered unmanned aerial vehicles[C]//2005 US Air Force T&E Days, 2005:7654.
[23] RICHARD S. Fundamentals of flight[M]. 2nd ed. Stanford:Stanford University, 2007.
[24] Capable Computing, Inc.MotoCalc 8:The world's best electric flight calculator[EB/OL].[2020-12-10]. http://www.motocalc.com/.