多相流与反应流的机理、模型及其调控技术专栏

非牛顿流体射流雾化特性研究进展

  • 杨立军 ,
  • 刘陆昊 ,
  • 富庆飞
展开
  • 北京航空航天大学 宇航学院, 北京 102206

收稿日期: 2020-11-17

  修回日期: 2020-12-10

  网络出版日期: 2021-02-24

基金资助

国家自然科学基金(11922201,11872091,U1837211)

Research progress in atomization characteristics of non-Newtonian fluid jet

  • YANG Lijun ,
  • LIU Luhao ,
  • FU Qingfei
Expand
  • School of Astronautics, Beihang University, Beijing 102206, China

Received date: 2020-11-17

  Revised date: 2020-12-10

  Online published: 2021-02-24

Supported by

National Natural Science Foundation of China (11922201, 11872091, U1837211)

摘要

本文总结了有关非牛顿流体射流雾化特性的研究进展。首先,阐述了预测非牛顿液体射流初次雾化失稳特性的理论方法,介绍了有关非牛顿流体射流初次雾化的实验现象和特性参数。当射流初次雾化的过程结束后,破碎产生的液滴会在高速气流中发生二次雾化。随后,总结了国内外有关非牛顿流体液滴二次雾化实验研究的相关进展。分析了液滴二次雾化的实验现象,总结了不同种类液滴二次雾化过程中所研究特性参数,如破碎模态、临界韦伯数和初始变形时间等随来流气体参数之间的关系,并介绍了基于液滴二次雾化物理过程所建立的预测喷雾场液滴平均粒径的雾化模型。最后,基于目前的研究现状,给出了非牛顿液体射流初次雾化和二次雾化实验研究的后续重点研究方向及建议。

本文引用格式

杨立军 , 刘陆昊 , 富庆飞 . 非牛顿流体射流雾化特性研究进展[J]. 航空学报, 2021 , 42(12) : 624974 -624974 . DOI: 10.7527/S1000-6893.2021.24974

Abstract

This paper summarizes the research progress in atomization characteristics of the non-Newtonian liquid jet. The theoretical method predicting the breakup features of the primary atomization of non-Newtonian jets is first illustrated, and the experimental observation and properties introduced. At the end of the primary atomization of non-Newtonian jets, the generated droplets would go through the secondary atomization in the high speed gaseous flow. Therefore, the experimental research progress, both domestically and abroad, in the secondary atomization of droplets is reviewed. The experimental results of non-Newtonian droplets are then compared, followed by the summary of the effects of incoming gaseous flow parameters on the key characteristics in the secondary atomization processes such as the breakup mode, critical Weber number and initial deformation time. In addition, the atomization model which is based on the breakup physical processes of droplets and can predict the average droplet diameter in the spray field is introduced. Finally, suggestions for the future key research fields of the primary and secondary atomization of non-Newtonian jets are provided based on the present research status.

参考文献

[1] NEGRI M, CIEZKI H K. Atomization of non-Newtonian flu-ids with an impinging jet injector:Influence of viscoelasticity on hindering droplets formation:AIAA-2010-6821[R]. Reston:AIAA, 2010.
[2] YANG L J, DU M L, FU Q F, et al. Linear stability analysis of a power-law liquid jet[J]. Atomization and Sprays, 2012, 22(2):123-141.
[3] YANG L J, DU M L, FU Q F, et al. Temporal instability of a power-law planar liquid sheet[J]. Journal of Propulsion and Power, 2014, 31(1):286-293.
[4] LIU L, YANG L, FU Q, et al. Improved modeling of free power-law liquid sheets by weighted-residual approximations[J]. International Journal of Multiphase Flow, 2018, 107:146-155.
[5] YANG L J, LIU Y X, FU Q F, et al. Linear stability analysis of electrified viscoelastic liquid sheets[J]. Atomization and Sprays, 2012, 22(11):951-982.
[6] YANG L J, LIU Y X, FU Q F. Linear stability analysis of an electrified viscoelastic liquid jet[J]. Journal of Fluid Engineering, 2012, 134(7):071303.
[7] YANG L J, XU B R, FU Q F. Linear instability analysis of planar non-Newtonian liquid sheets in two gas streams of unequal velocities[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 167-168:50-58.
[8] TONG M X, YANG L J, FU Q F, et al. Effect of gas/liquid shearing on the viscoelastic instability of a planar sheet[J]. Journal of Fluids Engineering, 2017, 139(4):044502.
[9] YANG L J, TONG M X, FU Q F. Linear stability analysis of a three-dimensional viscoelastic liquid jet surrounded by a swirling air stream[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 191:1-13.
[10] TONG M X, YANG L J, FU Q F, et al. Effect of gas-liquid axial velocity continuity on the axisymmetric and asymmetric instabilities of a viscoelastic liquid core in a swirling gaseous co-flow[J]. Atomization and Sprays, 2016, 26(1):1-21.
[11] YANG L J, TONG M X, FU Q F. Instability of viscoelastic annular liquid sheets subjected to unrelaxed axial elastic tension[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 198:31-38.
[12] TONG M X, FU Q F, YANG L J. Two-dimensional instability response of an electrified viscoelastic planar liquid sheet subjected to unrelaxed axial elastic tension[J]. Atomization and Sprays, 2015, 25(2):99-121.
[13] XIE L, JIA B Q, CUI X, et al. Effects of spatially decaying elastic tension on the instability of viscoelastic jets[J]. Physics of Fluids, 2019, 31(12):123107.
[14] TONG M X, YANG L J, FU Q F. Thermocapillar instability of a two-dimensional viscoelastic planar liquid sheet in surrounding gas[J]. Physics of Fluids, 2014, 26(3):033105.
[15] FU Q F, DENG X D, YANG L J. Kelvin-Helmholtz instability of confined Oldroyd-B liquid film with heat and mass transfer[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 267:28-34.
[16] JIA B Q, XIE L, YANG L J, et al. Linear instability of viscoelastic planar liquid sheets in the presence of gas velocity oscillations[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 273:104169.
[17] WANG C, YANG L J, XIE L, et al. Weakly nonlinear instability of planar viscoelastic sheets[J]. Physics of Fluids, 2015, 27(1):013103.
[18] XIE L, YANG L J, FU Q F, et al. Effects of unrelaxed stress tension on the weakly nonlinear instability of viscoelastic sheets[J]. Physics of Fluids, 2016, 28(10):104104.
[19] XIE L, YANG L J, WANG J J, et al. Weakly nonlinear instability of viscoelastic planar sheets with initial varicose disturbances[J]. Aerospace Science and Technology, 2018, 79:373-382.
[20] THOMPSON J C, ROTHSTEIN J P. The atomization of viscoelastic fluids in flat-fan and hollow-cone spray nozzles[J]. Journal of Non-Newtonian Fluid Mechanics, 2007, 147(1-2):11-22.
[21] YANG L J, FU Q F, ZHANG W, et al. Atomization of gelled propellants from swirl injectors with leaf spring in swirl chamber[J]. Atomization and Sprays, 2011, 21(11):949-969.
[22] YANG L J, FU Q F, QU Y Y, et al. Spray characteristics of gelled propellants in swirl injectors[J]. Fuel, 2012, 97:253-261.
[23] FU Q F, CUI K D. Spray of power-law fluid from a swirl injector with nontangential inlet channels[J]. Atomization and Sprays, 2014, 24(9):827-840.
[24] FU Q F, GE F, WANG W D, et al. Spray characteristics of gel propellants in an open-end swirl injector[J]. Fuel, 2019, 254:115555.
[25] RADWAL M B, NATAN B, MISHRA DP. Gel propellants[J].Progress in Energy and Combustion Science, 2021, 83:100885.
[26] MA Y C, BAI F Q, CHANG Q, et al. An experimental study on the atomization characteristics of impinging jets of power law fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 2015, 217:49-57.
[27] JAMES M, KUBAL T, SON S, et al. Calibration of an impinging jet injector suitable for liquid and gelled hypergolic propellants:AIAA-2009-4882[R]. Reston:AIAA, 2009.
[28] VON KAMPEN J, MADLENER K, CIEZKI H. Characteristic flow and spray properties of gelled fuels with regard to the impinging jet injector type:AIAA-2006-4573[R]. Reston:AIAA, 2006.
[29] YANG L J, FU Q F, QU Y Y, et al. Breakup of a power-law liquid sheet formed by an impinging jet injector[J]. International Journal of Multiphase Flow, 2012, 39:37-44.
[30] FU Q F, YANG L J, CUI K D, et al. Effects of orifice geometry on gelled propellants sprayed from impinging-jet injectors[J]. Journal of Propulsion and Power, 2014, 30(4):1113-1117.
[31] ZHAO F, YANG L J, FU Q F, et al. Oblique collision of two power-law fluid jets at low speed[J]. Journal of Propulsion and Power, 2015, 31(6):1653-1660.
[32] ZHAO F, QIN L Z, FU Q F, et al. Spray characteristics of elliptical power-law fluid-impinging jets[J]. Journal of Fluid Engineering, 2017, 139(7):071203.
[33] CIEZKI H, ROBERS A, SCHNEIDER G. Investigation of the spray behavior of gelled jet-A1 fuels using an air blast and an impinging jet atomizer:AIAA-2002-3601[R]. Reston:AIAA, 2002.
[34] ZHAO H, LIU H F, XU J L, et al. Breakup and atomization of a round coal water slurry jet by an annular air jet[J]. Chemical Engineering Science, 2012, 78:63-74.
[35] GECKLER S C, SOJKA P E. Effervescent atomization of viscoelastic liquids:experiment and modeling[J]. Journal of Fluid Engineering, 2008, 130(6):061303.
[36] MANSOUR A, CHIGIER N. Air-blast atomization of non-Newtonian liquids[J]. Journal of Non-Newtonian Fluid Mechanics, 1995, 58(2-3):161-194.
[37] HERMOSÍN-REYES M, GAÑÁN-CALVO A M, MODESTO-LóPEZ L B. Flow blurring atomization of Poly(ethylene oxide) solutions below the coil overlap concentration[J]. Journal of Aerosol Science, 2019, 137:105429.
[38] CSIZMADIA P, TILL S, HÖS C. An experimental study on the jet breakup of Bingham plastic slurries in air[J]. Experimental Thermal and Fluid Science, 2019, 102:271-278.
[39] JEJURKAR S Y, YADAV G, MISHRA D P. Visualizations of sheet breakup of non-Newtonian gels loaded with nanoparticles[J]. International Journal of Multiphase Flow, 2018, 100:57-76.
[40] NEGRI M, CIEZKI H K. Effect of elasticity of Boger fluids on the atomization behavior of an impinging jet injector[J]. Atomization and Sprays, 2015, 25(8):695-714.
[41] DINIC J, SHARMA V. Macromolecular relaxation, strain, and extensibility determine elastocapillary thinning and extensional viscosity of polymer solutions[J]. Proceedings of the National Academy of Science of the United States of America, 2019, 116(18):8766-8774.
[42] MUN R P, BYARS J A, BOGER D V. The effects of polymer concentration and molecular weight on the breakup of laminar capillary jets[J]. Journal of Non-Newtonian Fluid Mechanics, 1998, 74(1-3):285-297.
[43] MCCABE J, COIL M. A graphical spray analysis method for gel spray characterization:AIAA-2010-6823[R]. Reston:AIAA, 2010.
[44] THEOFANOUS T G, MITKIN V V, NG C L. The physics of aerobreakup. III. Viscoelastic liquids[J]. Physics of Fluids, 2013, 25(3):032101.
[45] HSIANG L P, FAETH G M. Drop deformation and breakup due to shock wave and steady disturbances[J]. International Journal of Multiphase Flow, 1995, 21(4):545-560.
[46] QIAN L J, ZHONG X K, ZHU C L, et al. An experimental investigation on the secondary breakup of carboxymethyl cellulose droplets[J]. International Journal of Multiphase Flow, 2021, 136:103526.
[47] ZHAO H, LIU H F, LI W F, et al. Morphological classification of low viscosity drop bag breakup in a continuous air jet stream[J]. Physics of Fluids, 2010, 22(11):114103.
[48] KULKARNI V, SOJKA P E. Bag breakup of low viscosity drops in the presence of a continuous air jet[J]. Physics of Fluids, 2014, 26(7):072103.
[49] ZHAO H, LIU H F, XU J L, et al. Temporal properties of secondary drop breakup in the bag-stamen breakup regime[J]. Physics of Fluids, 2013, 25(5):054102.
[50] DAI Z, FAETH G M. Temporal properties of secondary drop breakup in the multimode breakup regime[J]. International Journal of Multiphase Flow, 2001, 27(2):217-236.
[51] WILCOX J D, JUNE R K, BROWN H A, et al. The retardation of drop breakup in high-velocity airstreams by polymeric modifiers[J]. Journal of Applied Polymer Science, 1961, 5(13):1-6.
[52] MATTA J E, TYTUS R P. Viscoelastic breakup in a high velocity airstream[J]. Journal of Applied Polymer Science, 1982, 27(2):397-405.
[53] ARCOUMANIS C, KHEZZAR L, WHITELAW D S, et al. Breakup of Newtonian and non-Newtonian fluids in air jets[J]. Experiments in Fluids, 1994, 17(6):405-414.
[54] ARCOUMANIS C, WHITELAW D S, WHITELAW J H. Breakup pf droplets of Newtonian and non-Newtonian fluids[J]. Atomization and Sprays, 1996, 6:245-256.
[55] SHRAIBER A A, PODVYSOTSKY A M, DUBROVSKY V V. Deformation and breakup of drops by aerodynamic forces[J]. Atomization and Sprays, 1996, 6(6):667-692.
[56] LEE C H, REITZ R D. An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream[J]. International Journal of Multiphase Flow, 2000, 26(2):229-244.
[57] LIU Z, REITZ R D. An analysis of the distortion and breakup mechanisms of high speed liquid drops[J]. International Journal of Multiphase Flow, 1997, 23(4):631-650.
[58] DINH N, LI G J, THEOFANOUS T. An investigation of droplet breakup in a high Mach, low weber number regime[C]//41 st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003:317.
[59] SNYDER S, SOJKA P E. Secondary atomization of elastic non-Newtonian drops[C]//24th European Conference on Liquid Atomization and Spray Systems, 2011.
[60] SNYDER S, SOJKA P E. Spatially resolved characteristics and analytical modeling of elastic non-Newtonian secondary breakup[C]//12nd Triennial International Conference on Liquid Atomization and Spray Systems, 2012.
[61] SNYDER S, AROCKIAM N, SOJKA P. Secondary atomization of elastic non-Newtonian liquid drops:AIAA-2010-6822[R]. Reston:AIAA, 2010.
[62] SNYDER S, AROCKIAM N, SOJKA P. Secondary atomization of elastic non-Newtonian liquid drops[C]//46th AIAA/ASME/ASEE Joint Propulsion Conference & Exhibit. Reston:AIAA, 2010:6822.
[63] LOPZE R C. Secondary breakup of inelastic non-Newtonian liquid drops[D]. West Lafayette:Purdue University, 2010.
[64] LOPZE R C, SOJKA P E. Secondary breakup of non-Newtonian liquid drops[C]//11th Triennial International Annual Conference on Liquid Atomization and Spray Systems, 2009.
[65] ROCHA J. Secondary atomization of inelastic non-Newtonian liquid drops in the bag and multimode regimes[D]. West Lafayette:Purdue University, 2016.
[66] 邓寒玉, 封锋, 武晓松, 等. 基于扩展TAB模型的凝胶液滴二次雾化特性研究[J]. 推进技术, 2015, 36(11):1734-1740. DENG H Y, FENG F, WU X S, et al. Characteristics of second atomization for gelled droplet based on extended TAB model[J]. Journal of Propulsion Technology, 2015, 36(11):1734-1740(in Chinese).
[67] 邓寒玉, 封锋, 孔上峰. 横向气流中航空煤油凝胶液滴二次雾化特性实验研究[J]. 推进技术, 2017, 38(12):2658-2666. DENG H Y, FENG F, KONG S F. Experimental study on characteristics of secondary atomization for gelled kerosene droplet in air crossflow[J]. Journal of Propulsion Technology, 2017, 38(12):2658-2666(in Chinese).
[68] 邓寒玉. 航空煤油凝胶的撞击雾化及液滴破碎机理研究[D]. 南京:南京理工大学, 2018. DENG H Y. Research on mechanisms of impinging atomization and droplet breakup of gelled kerosene[D]. Nanjing:Nanjing University of Science and Technology, 2018(in Chinese).
[69] 孔上峰, 封锋, 邓寒玉. 高韦伯数下煤油液滴的破碎机理研究[J]. 实验流体力学, 2017, 31(1):20-25. KONG S F, FENG F, DENG H Y. Breakup of a kerosene droplet at high Weber numbers[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1):20-25(in Chinese).
[70] 孔上峰, 封锋, 邓寒玉. 气流中煤油凝胶液滴变形破碎过程的试验[J]. 推进技术, 2017, 38(12):2857-2864. KONG S F, FENG F, DENG H Y. Experiment on breakup of a gelled kerosene droplet in air jet flow[J]. Journal of Propulsion Technology, 2017, 38(12):2857-2864(in Chinese).
[71] 孔上峰. 煤油凝胶二次雾化特性研究[D]. 南京:南京理工大学, 2017. KONG S F. Research on the secondary atomization characteristics of gelled kerosene droplet[D]. Nanjing:Nanjing University of Science and Technology, 2017(in Chinese).
[72] ZHAO H, LIU H F, XU J L, et al. Secondary breakup of coal water slurry drops[J]. Physics of Fluids, 2011, 23(11):113101.
[73] 赵辉. 同轴气流式雾化机理研究[D]. 上海:华东理工大学, 2012. ZHAO H. Study on the mechanism of coaxial air-blast atomization[D]. Shanghai:East China University of Science and Technology, 2012(in Chinese).
[74] BAKER T, NEGRI M, BERTOLA V. Atomization of high-viscosity and non-Newtonian fluids by premixing[J]. Atomization and Spray 2018, 28(5):403-416.
[75] 宋少波. 非牛顿流体液滴形变破碎实验研究与数值仿真[D]. 杭州:中国计量大学, 2019. SONG S B. Experimental investigation and numerical simulation on deformation and breakup of non-Newtonian fluid droplet[D]. Hangzhou:China University of Metrology, 2019(in Chinese).
[76] 曹钦柳, 封锋, 邓寒玉. 煤油凝胶液滴破碎时空特性实验研究[J]. 含能材料, 2017, 25(4):342-347. CAO Q L, FENG F, DENG H Y. Temporal and spatial characteristics of gelled kerosene droplet breakup[J]. Chinese Journal of Energetic Materials, 2017, 25(4):342-347(in Chinese).
[77] DOMBROWSKI N, JOHNS W R. The aerodynamic instability and disintegration of viscous liquid sheets[J]. Chemical Engineering Science, 1963, 18(3):203-214.
[78] SENECAL P K, SCHMIDT D P, NOUAR I, et al. Modeling high-speed viscous liquid sheet atomization[J]. International Journal of Multiphase Flow, 1999, 25(6-7):1073-1097.
[79] VARGA C M, LASHERAS J C, HOPFINGER E J. Initial breakup of a small-diameter liquid jet by a high-speed gas stream[J]. Journal of Mechanics, 2003, 497:405-434.
[80] RAYNAL L. Instabilite et entrainement a l'interface d'une couche de melange liquide-gaz[D]. Grenoble:University of Joseph Fourier, 1997.
[81] ALISEDA A, HOPFINGER E J, LASHERAS J C, et al. Atomization of viscous and non-Newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling[J]. International Journal of Multiphase Flow, 2008, 34(2):161-175.
[82] RAYANA F B, CARTELLIER A, HOPFINGER E. Assisted atomization of a liquid layer:Investigation of the parameters affecting the mean drop size rediction[C]//6th International Conference on Liquid Atomization and Spray Systems, 2006.
[83] MAYER E. Theory of liquid atomization in high velocity gas streams[J]. American Rocket Society Journal, 1961, 31(12):1783-1785.
[84] ADELBERG M. Mean drop size resulting from the injection of a liquid jet into a high-speed gas stream[J]. AIAA Journal, 1968, 6(6):1143-1147.
[85] 刘陆昊,富庆飞,杨立军. 气液同轴离心喷嘴雾化理论模型[C]//第五届空天动力联合会议, 2020. LIU L H, FU Q F, YANG L J. Atomization model of coaxial swirl injectors[C]//The 5th joint conference of aerospace propulsion, 2020(in Chinese).
[86] QIN L Z, YI R, YANG L J. Theoretical breakup model in the planar liquid sheets exposed to high-speed gas and droplet size prediction[J]. International Journal of Multiphase Flow, 2018, 98:158-167.
[87] FU Q F, YAO M W, YANG L J, et al. Atomization model of liquid jets exposed to subsonic crossflows[J]. AIAA Journal, 2020, 58(5):2347-2351.
[88] LIU L H, YANG L J, FU Q F. Droplet size spatial distribution model of liquid jets injected into subsonic crossflow[J]. International Journal of Aerospace Engineering, 2020(1):1-14.
文章导航

/