论文

扰动环境下火星精确着陆自主轨迹规划方法

  • 邓云山 ,
  • 夏元清 ,
  • 孙中奇 ,
  • 沈刚辉
展开
  • 1. 北京理工大学 自动化学院, 北京 100081;
    2. 复杂系统智能控制与决策国家重点实验室, 北京 100081

收稿日期: 2020-10-02

  修回日期: 2020-11-30

  网络出版日期: 2021-02-24

基金资助

国家自然科学基金(61836001,61803033)

Autonomous trajectory planning method for Mars precise landing in disturbed environment

  • DENG Yunshan ,
  • XIA Yuanqing ,
  • SUN Zhongqi ,
  • SHEN Ganghui
Expand
  • 1. School of Automation, Beijing Institute of Technology, Beijing 100081, China;
    2. State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing 100081, China

Received date: 2020-10-02

  Revised date: 2020-11-30

  Online published: 2021-02-24

Supported by

National Natural Science Foundation of China (61836001, 61803033)

摘要

针对扰动环境下火星精确着陆动力下降段自主轨迹规划问题,在终端时间自由条件下,研究了基于序列凸优化方法的自主轨迹规划方法。首先,在终端自由情况下,建立初始状态无扰动轨迹预规划问题。其次,结合鲁棒Tube-MPC思想,针对线性反馈控制律,建立扰动环境下着陆轨迹重规划问题,分析重规划问题的可行性,给出了预规划问题可行的必要性条件,为控制参数的选取提供参考,提出扰动环境下火星精确着陆自主轨迹规划框架。然后,针对终端自由问题,将飞行时域映射到单位时间,建立序列凸优化子问题,对子问题进行线性近似,使用序列凸优化方法进行求解并分析了收敛解的最优性。最后,进行数值仿真,验证扰动环境下火星精确着陆自主轨迹规划方法的有效性。

本文引用格式

邓云山 , 夏元清 , 孙中奇 , 沈刚辉 . 扰动环境下火星精确着陆自主轨迹规划方法[J]. 航空学报, 2021 , 42(11) : 524834 -524834 . DOI: 10.7527/S1000-6893.2021.24834

Abstract

An autonomous trajectory planning method of Mars landing powered-descent in the disturbed environment is proposed based on the sequential convex programming method with the consideration of free terminal time. Firstly, considering the free terminal time, a trajectory planning problem without disturbance is established. Secondly, based on the robust Tube-MPC and the linear feedback control law, we establish a series of replanning problems of landing trajectory under the disturbed environment. The feasibility of the replanning problems is analyzed, and the necessary conditions for the feasibility of the preplanning problem are given to provide a reference for selection of control parameters. The autonomous trajectory planning framework for Mars precise landing under the disturbed environment is then proposed. Thirdly, considering the free terminal time, the flight time domain is mapped to the unit time, and a sub-problem of sequence optimization is established. The sub-problem is linearly approximated, and the sequential convex programming is employed to solve it. It is proved that the convergent solution of the approximation problem is a KKT solution of the original problem. Finally, numerical simulation is carried out to verify the effectiveness of the method.

参考文献

[1] 林来兴. 美国"轨道快车"计划中的自主空间交会对接技术[J]. 国际太空, 2005(2):23-27. LIN L X. Autonomous space rendezvous and docking technol-ogy in the US "Rail Express" program[J]. Space International, 2005(2):23-27(in Chinese).
[2] XIA Y Q, CHEN R F, PU F, et al. Active disturbance rejection control for drag tracking in Mars entry guidance[J]. Advances in Space Research, 2014, 53(5):853-861.
[3] 夏元清. 火星探测器进入、下降与着陆过程的导航、制导与控制:"恐怖"七分钟[M]. 北京:科学出版社, 2017:11-17. XIA Y Q. Navigation, guidance and control of entry, descent and landing of Mars probe[M]. Beijing:Science Press, 2017:11-17(in Chinese).
[4] 任高峰, 高艾, 崔平远, 等. 一种燃料最省的火星精确着陆动力下降段快速轨迹优化方法[J]. 宇航学报, 2014, 35(12):1350-1358. REN G F, GAO A, CUI P Y, et al. A rapid power descent phase trajectory optimization method with minimum fuel consumption for Mars pinpoint landing[J]. Journal of Astronautics, 2014, 35(12):1350-1358(in Chinese).
[5] ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5):1353-1366.
[6] YE Y. Interior point algorithms:Theory and analysis[M]. New York:Wiley, 1997.
[7] STURM J F. Using SeDuMi 1.02, A MATLAB toolbox for optimization over symmetric cones[J]. Optimization Methods and Software, 1999, 11(1-4):625-653.
[8] STURM J F. Implementation of interior point methods for mixed semidefinite and second order cone optimization problems[J]. Optimization Methods and Software, 2002, 17(6):1105-1154.
[9] BLACKMORE L, AÇIKMEŞE B, SCHARF D P. Minimum-landing-error powered-descent guidance for Mars landing using convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1161-1171.
[10] EREN U, DUERI D, AÇIKMEŞE B. Constrained reachability and controllability sets for planetary precision landing via convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(11):2067-2083.
[11] SAGLIANO M. Pseudospectral convex optimization for powered descent and landing[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(2):320-334.
[12] PINSON R M, LU P. Trajectory design employing convex optimization for landing on irregularly shaped asteroids[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(6):1243-1256.
[13] SZMUK M, ACIKMESE B, BERNING A W. Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints:AIAA-2016-0378[R]. Reston:AIAA, 2016.
[14] YANG R Q, LIU X F. Fuel-optimal powered descent guidance with free final-time and path constraints[J]. Acta Astronautica, 2020, 172:70-81.
[15] WANG J B, CUI N G, WEI C Z. Optimal rocket landing guidance using convex optimization and model predictive control[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(5):1078-1092.
[16] BRUNNER F D, HEEMELS M, ALLGÖWER F. Robust self-triggered MPC for constrained linear systems:A tube-based approach[J]. Automatica, 2016, 72:73-83.
[17] BEN-TAL A, NEMIROVSKI A. Lectures on modern convex optimization:Analysis, algorithms, and engineering applications[M]. Philadelphia:Society for Industrial and Applied Mathematics, 2001.
[18] LIU X F, LU P. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):750-765.
[19] BOYD S, VANDENBERGHE L. Convex optimization[M]. Cambridge:Cambridge University Press, 2004.
[20] ANDERSEN E D, ROOS C, TERLAKY T. On implementing a primal-dual interior-point method for conic quadratic optimization[J]. Mathematical Programming, 2003, 95(2):249-277.
[21] ANDERSEN E D, ANDERSEN K D. The mosek interior point optimizer for linear programming:An implementation of the homogeneous algorithm[M]//High Performance Optimization. Boston:Springer, 2000:197-232.
[22] 崔平远, 赵泽端, 朱圣英. 火星大气进入段轨迹优化与制导技术研究进展[J]. 宇航学报, 2019, 40(6):611-620. CUI P Y, ZHAO Z D, ZHU S Y. Research progress of trajectory optimization and guidance techniques for Mars atmospheric entry[J]. Journal of Astronautics, 2019, 40(6):611-620(in Chinese).
文章导航

/