综述

国外航空疲劳研究现状及展望

  • 孙侠生 ,
  • 苏少普 ,
  • 孙汉斌 ,
  • 董登科
展开
  • 1. 中国航空研究院, 北京 100029;
    2. 中国飞机强度研究所, 西安 710065

收稿日期: 2020-09-23

  修回日期: 2020-10-14

  网络出版日期: 2021-02-18

Current status and prospect of overseas research on aeronautical fatigue

  • SUN Xiasheng ,
  • SU Shaopu ,
  • SUN Hanbin ,
  • DONG Dengke
Expand
  • 1. Chinese Aeronautical Establishment, Beijing 100029, China;
    2. Aircraft Strength Research Institute, Xi'an 710065, China

Received date: 2020-09-23

  Revised date: 2020-10-14

  Online published: 2021-02-18

摘要

航空疲劳问题是影响在研/在役飞机性能的关键因素之一。以航空疲劳事故为线索,本文论述了航空结构强度设计理念的变革历程以及相应各时期的航空疲劳发展现状,并围绕21世纪以来国际航空疲劳界的关注热点,从结构长寿命设计、疲劳分析方法及工具、全尺寸结构疲劳试验技术、结构健康监测技术、老龄飞机延寿技术等五个方面阐述了航空疲劳工程领域的重大研究进展及方向。考虑目前航空疲劳工程中的问题及未来航空器的发展方向,从航空疲劳评定基础问题、长寿命设计应用问题、试验评估及数字化新技术等方面指出航空疲劳研究所面临的挑战,以满足现代飞机长寿命、轻质和高可靠性设计要求,为航空疲劳未来发展提供技术参考。

本文引用格式

孙侠生 , 苏少普 , 孙汉斌 , 董登科 . 国外航空疲劳研究现状及展望[J]. 航空学报, 2021 , 42(5) : 524791 -524791 . DOI: 10.7527/S1000-6893.2020.24791

Abstract

Fatigue is one of the key factors affecting the performance of aircraft in research or service. In this article, firstly, the aeronautical accidents caused by fatigue were quoted as clues to state the evolution of structural strength design concept and research situation at each specific period. Meanwhile, international aeronautical fatigue research and their significant development as well as the future developing directions in areas since 21 century has been reviewed and evaluated in the aspects of structural long-life design, fatigue analysis approaches and tools, full-scale structural fatigue testing technology, structural health monitoring and life extension of aging aircraft. Conclusively, considering the current problems and potential development directions, the challenges resisting the realization of high requirement on the long life, lightweight and high reliability of future aircraft design were pointed out on four topics:aeronautical fatigue on evaluation basic research, design and application research, testing evaluation and digital technology, which provides technical materials for the development of aeronautical fatigue.

参考文献

[1] RUSSELL J H W. Fatigue requirements for aircraft structures[M]. Amsterdam:Elsevier, 2018.
[2] SCHIJVE J. Fatigue of structures and materials in the 20th century and the state of the art[J]. International Journal of Fatigue, 2003, 25(8):679-702.
[3] SCHIJVE J. Fatigue damage in aircraft structures, not wanted, but tolerated[J].International Journal of Fatigue, 2009, 31(6):998-1011.
[4] 陶梅贞.现代飞机结构综合设计[M].西安:西北工业大学出版社,2016. TAO M Z. Comprehensive design of modern aircraft structure[M]. Xi'an:Northwestern Polytechnical University Press, 2016(in Chinese).
[5] MANN J Y. Bibliography on the fatigue of materials, components and structures[M]. Oxford:Pergamon Press (1970, 1978, 1983 and 1990).
[6] SWIFT T. Damage tolerance in pressurized fuselages[C]//Proceedings of the 14th ICAF Symposium, 1987.
[7] KEVIN M W, LYNETTE L H, MATTHEW S E, et al. USAF F-16A/B fuel shelf joint structural risk assessment[C]//USAF ASIP Conference,28-30,2006.
[8] Department of Defense Standard Practice. Aircraft structural integrity program (ASIP):MIL-STD-1530 D[R]. 2016.
[9] Airplane strength and rigidity reliability requirements, repeated loads, fatigue and damage tolerance:MIL-A-8866C[R].1987.
[10] 焦志强,舒成辉.飞机结构完整性设计思想的发展和标准的演变[J].航空标准化与质量,2010(1):21-24. JIAO Z Q, SHU C H. Development of aircraft structure integrity design thought and evolution of standards[J]. Aviation Standardization and Quality,2010(1):21-24(in Chinese).
[11] ANDERS B. Important events, state of the art, and ICAF activities[C]//ICAS2018, 2018.
[12] HUANG Y J, GUAN Z D, LI H T. Effects of chamfering, cold expansion, bolt clamping, and their combinations on fatigue life of aluminum-lithium alloy single plate[J].Mechanical Engineering, 2018, 10(1):1-13.
[13] RAVINDER C. A review of research on aeronautical fatigue in the United States 2013-2015[C]//Proceedings of the 34th conference of ICAF, 2015.
[14] JONES K W, DUNN L M. Predicting corner crack fatigue propagation from cold worked holes[J]. Engineering Fracture Mechanics, 2009, 76(13):2074-2090.
[15] PARDHU Y, RAJULAPATI K V, PRASAD G V R, et al. Effect of laser shock peening on high cycle fatigue characteristics of 316LN stainless steel[J]. International Journal of Pressure Vessels and Piping, 2019, 176:103972.
[16] ELKE H. Review of aeronautical fatigue investigations in Germany during the period april 2013 to March 2015[C]//Proceedings of the 34th Conference of ICAF,2015.
[17] ELKE H. Review of aeronautical fatigue investigations in Germany during the period April 2017 to March 2019[C]//Proceedings of the 36th Conference of ICAF, 2019.
[18] RAVINDER C. A review of research on aeronautical fatigue in the United States 2015-2017[C]//Proceedings of the 35th ICAF Conference, 2017.
[19] ESSAM S, AHMAD W. Cost modeling for aerospace composite applications[C]//The 19th ISPE International Conference on Concurrent Engineering-CE2012, 2012.
[20] MIKAEL P, PIERRE C, MARC T, et al. High temperature materials for aerospace applications:Ni-based superalloys and γ-TiAl alloys[J]. Comptes Rendus Physique, 2018, 19(8):657-671.
[21] 董登科,闫文伟,陈先民,等.民用飞机新型轻质结构设计技术发展现状[J].结构强度研究,2012(1):1-8. DONG D K, YAN W W, CHEN X M, et al. Development status of new lightweight structure design technology for civil aircraft[J]. Structural Strength Research,2012(1):1-8(in Chinese).
[22] IKUHIRO I, TSUTOMU T, YOSHIHISA S, et al. Application and features of titanium for the aerospace industry[R].Nippon Steel & Sumitomo Metal Technical Report, 2014.
[23] 王华明.高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese).
[24] MICHAEL G O. Additive manufacturing in the context of structural integrity[J]. International Journal of Fatigue, 2017, 94:168-177.
[25] HIROSHI K, YUKIHIRO K, TSUKASA W, et al. Fatigue characteristic of linear friction welded Ti-6Al-4V[C]//Proceedings of the 30th Symposium of ICAF, 2019.
[26] RAVINDER C. A review of research on aeronautical fatigue in the United States 2017-2019[C]//Proceedings of the 36th conference of ICAF, 2019.
[27] IVAN M, GORAN IV, MATTHIAS S, et al. Fatigue in additive manufactured aircraft:The long way to make it fly[C]//Proceedings of the 30th symposium of ICAF, 2019.
[28] DANIEL G, VITUS H, CLAUDIO D. Fatigue prediction of additive manufactured Ti-6Al-4V for aerospace:Effect of defects, surface roughness[C]//Proceedings of the 28th Symposium of ICAF, 2015.
[29] GORANSON U G. Fatigue issues in aircraft maintenance and repairs[J].International Journal of Fatigue,1997,19(Supp.1):S3-S21.
[30] 郑晓玲.民用飞机结构耐久性与损伤容限设计手册(上册):疲劳设计与分析[M].北京:航空工业出版社,2003. ZHENG X L. Design manual of durability and damage tolerance of civil aircraft structure (Vol.1):Fatigue design and analysis[M]. Beijing:Aviation Industry Press, 2003(in Chinese).
[31] BUBAEH J. On the physical justification of the term "state of fatigue of materials under cyclic loading", cyclizc stress strain) behavior analysis experimentation and failure prediction[R]. ASTMnSTP519, 1973:185-212.
[32] 曾春华,邹十践.疲劳分析方法及应用[M]. 北京:国防工业出版社,1991. ZENG C H,ZOU S J. Fatigue analysis methods and application[M]. Beijing:National Defense Industry Press,1991(in Chinese).
[33] MICHAEL G. Additive manufacturing in the context of structural integrity[J]. International Journal of Fatigue,2017, 94:168-177.
[34] SCHIJVE J. Four lectures on fatigue crack growth I. Fatigue crack growth and fracture mechanics[J]. Engineering Fracture Mechanics, 1979, 11(1):169-181.
[35] MILLER K J. The two thresholds of fatigue behavior[J]. Fatigue Fracture Engineering Materials Structures, 1993, 16(9):931-939.
[36] NAVAXRO A, DE LOS RIOS E R. A model for short fatigue crack propagation with an interpretation of the short-long crack transition[J]. Fatigue Fracture Engineering Materials Structures, 1987, 10(2):169-186.
[37] BARTER S, BURCHILL M, JONES M. Improving the prediction of small crack growth in 7XXX aluminum alloys[C]//Proceedings of the 28th Symposium of ICAF, 2015.
[38] BURCHILL M, BARTER S, CHAN L H. Improving fatigue life predictions with a crack growth rate material model based on small crack growth & legacy data[C]//17th Australian International Aerospace Congress (AIAC17), 2017.
[39] MURAKAMI Y, ENDO M. Effects of hardness and crack geometries on dKth of small cracks emanating from small defects[M].Ann Arbor:Mechanical Engineering Publications,1986.
[40] 《民机结构耐久性与损伤容限设计手册》编委会.民机结构耐久性与损伤容限设计手册(下册)[M]. 北京:航空工业出版社,2003. Editorial Board of Durability and Damage Tolerance Design Mannal for Civil Aircraft Structures.Design manual of durability and damage tolerance of civil aircraft structure (Vol.2):Fatigue design and analysis[M]. Beijing:Aviation Industry Press, 2003(in Chinese).
[41] ROE K L. SIEGMUND Y T. An irreversible cohesive zone model for interface fatigue crack growth simulation[J]. Engineering Fracture Mechanics, 2003, 70:209-232.
[42] DE-ANDRE A, PEREZ J L, ORTIZ M. Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading[J]. International Journal of Solids and Structures, 1999, 36(15):2231-2258.
[43] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Jourual for Numerical Methods in Engineering, 1999, 45(15):601-620.
[44] SHI J, CHOPP D, LUA S N, et al. Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions[J]. Engineering Fracture Mechanics, 2010,77(14):2840-2863.
[45] LECHEB S, NOUR A, CHELLIL A. An adaptive dynamic fracture for 3D fatigue crack growth using XFEM[J]. Engineering and Technology, 2013, 78:2003-2008.
[46] SINGH I V, MISHRA B K, BHATTACHARYA S. The numerical simulation of fatigue crack growth using extended finite element method[J].International Journal of Fatigue, 2012, 36(1):109-119.
[47] NICOLA Z, ENRICO T. A numerical approach to the disbanding mechanism of adhesive joints[C]//Proceedings of the 30th Symposium of ICAF, 2019.
[48] ASHLEY S. 3D measurements of microstructural small fatigue-crack evolution in an aluminum alloy[C]//Proceedings of the 28th Symposium of ICAF, 2015.
[49] MOHANTY J R, VERMA B B, RAY R K. Prediction of fatigue crack growth and residual life using an exponential model:Part II(model-I overload induced retardation)[J].International Journal of Fatigue, 2009, 31:425-432.
[50] ELISE L, FRANK H, PIERRE M. 3D crack propagation testing and modeling in thick aluminum 2024 T351[C]//Proceedings of the 35th Conference of ICAF, 2017.
[51] ALOUSIS L. Numerical predictions of evolving crack front geometry and fatigue life from countersunk holes in thin plates[D]. Kingston:Royal Military College of Canada, 2014.
[52] BUCHWEITZ I, SANTGERMA A, TURREL N. Airbus on the way to show compliance with WFD regulation[C]//Proceedings of the 27th ICAF Symposium, 2013.
[53] BORIS G, NESTERENKOL G, NESTERENKOL I, et al. Russian practice to provide safe operation of airplane structures with long-term operation[C]//Proceedings of the 30th ICAF Symposium, 2019.
[54] FABIANO H. Widespread fatigue damage evaluation for multiple elements based on probabilistic approach[C]//Proceedings of the 30th ICAF Symposium, 2019.
[55] OKADA T, LIAO M, MACHIDA S, et al. WFD evaluation of riveted lap joint[C]//Proceedings of the 28th Symposium of ICAF, 2015.
[56] ANSART T H. Review of aeronautical fatigue investigations in France during the period May 2013-April 2015[C]//34th Conference of ICAF, 2015.
[57] Federal Aviation Administration. Aging aircraft program:Widespread fatigue damage,proposed rule[J].Federal Register,2006,74(71):19927-19951.
[58] 刘文珽,郑旻仲,费斌军.概率断裂力学与概率损伤容限/耐久性[M]. 北京:北京航空航天大学出版社, 1999. LIU W T, ZHENG M Z, FEI B J. Probabilistic fracture mechanics and probabilistic damage tolerance/durability[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 1999(in Chinese).
[59] JUAN O, HARRY M, NATHAN C. An ultrafast crack growth lifing model to support digital twin, virtual testing, and probabilistic damage tolerance applications[C]//Proceedings of the 30th Symposium of ICAF, 2019.
[60] 郑建军,唐吉运,王彬文.C919飞机全机静力试验技术[J].航空学报,2019,40(1):522364. ZHENG J J, TANG J Y, WANG B W. Static test technology of C919 aircraft[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522364(in Chinese).
[61] STEVEN C, ANTONIO R, BRANDON C, et al. Structural durability and damage tolerance in the next century of commercial aviation[C]//Proceedings of the 28th of ICAF Symposium, 2015.
[62] STEVEN A C, BRANDON D C, SHANE R S, et al. Full-scale fatigue testing at boeing commercial airplanes:From the 707 to the 787[C]//Proceedings of the 35th Conference of ICAF, 2017.
[63] ANSART T. Review of aeronautical fatigue investigations in France during the period May 2015-April 2017[C]//Proceedings of the 35th Conference of ICAF, 2017.
[64] ELKE H. Review of aeronautical fatigue investigations in germany during the period april 2015 to March 2017[C]//Proceedings of the 35th Conference of ICAF, 2017.
[65] BOSCH P, EYRE J D. A new experience of fatigue testing with the A350 XWB[C]//Proceedings of the 29th Symposium of ICAF, 2017.
[66] BOSCH P,NIELSEN T, RADIANT Y. Test program for the A380 major fatigue test[C]//Proceedings of the 23th Symposium of ICAF, 2005.
[67] ANDRÉ C B, ALEXANDRE B, ROBERT P. Bombardier global 7500 fatigue test cycle rate commissioning to 1/4 Lifen[C]//Proceedings of the 30th Symposium of ICAF, 2019.
[68] GRAHAM K, ARTIM M, DAVERSCHOT D. Aircraft fatigue analysis in the digital age[C]//Proceedings of the 29th Symposium of ICAF, 2017.
[69] TUSCH O, STODT M, WU D. Changing the philosophy of full-scale-fatigue-tests derived from 50 years of IABG experience towards a virtual environment[C]//Proceedings of the 30th Symposium of ICAF, 2019.
[70] PARK H, MACKEY R, JAMES M, et al. Analysis of space shuttle main engine data using beacon-based exception analysis for multi-missions[C]//IEEE Aerospace Conference Proceedings. Piscataway:IEEE Press, 2002:2835-2844.
[71] PARK H G, CANNON H, BAJWA A, et al. Hybrid diagnostic system:Beacon-based exception analysis for multimissions-livingstone Integlation[C]//Society for Machinery Failure Prevenhon Technology (MFPT) Conference, 2004.
[72] 王仲生,余汇,芦玉华,等. 大飞机测控关键技术现状及其应用[J].航空制造技术, 2009,52(8):54-57. WANG Z S, XU H, LU Y H, et al. Current status and application of key measurement and control technologies in large commercial jet[J]. Aeronautical Manufacturing Technology, 2009, 52(8):54-57(in Chinese).
[73] JON D. The TATEM Solution[Z].TATEM Consortium-Aero Days, 2006.
[74] The TATEM project supporting concepts[EB/OL].http://www.tatemproject.com/pg14.html.
[75] PHIL J, KEVIN W. A review of Australian investigations on aeronautical fatigue and structural integrity during the period April 2015 to march 2017[C]//Proceedings of the 35th Conference of ICAF, 2017.
[76] KIMBERLI J, BRYCE H, MATT R. Long term viper-flying the F-16 to 8000 hours and beyond[C]//Proceedings of the 29th Symposium of ICAF, 2017.
[77] TOMI V, PIRITTA V, ASLAK S. A review of aeronautical fatigue investigations in Finland march 2015-march 2017[C]//Proceedings of the 35th Conference of ICAF, 2017.
[78] ZICHENKOV M C, KONOVALOV V V, SCHERBAN K S. A review of fatigue test of full scale aeronautical structures in TsAGI during the period from 2015 to 2017[C]//Proceedings of the 29th Symposium of ICAF, 2017.
[79] SHCHERBAN K S, SURNACHEV A A, LIMONIN M V, et al. Combined static and fatigue tests of the full-scale structure of a transport aircraft[C]//Proceedings of the 29th Symposium of ICAF, 2017.
文章导航

/