[1] RUSSELL J H W. Fatigue requirements for aircraft structures[M]. Amsterdam:Elsevier, 2018.
[2] SCHIJVE J. Fatigue of structures and materials in the 20th century and the state of the art[J]. International Journal of Fatigue, 2003, 25(8):679-702.
[3] SCHIJVE J. Fatigue damage in aircraft structures, not wanted, but tolerated[J].International Journal of Fatigue, 2009, 31(6):998-1011.
[4] 陶梅贞.现代飞机结构综合设计[M].西安:西北工业大学出版社,2016. TAO M Z. Comprehensive design of modern aircraft structure[M]. Xi'an:Northwestern Polytechnical University Press, 2016(in Chinese).
[5] MANN J Y. Bibliography on the fatigue of materials, components and structures[M]. Oxford:Pergamon Press (1970, 1978, 1983 and 1990).
[6] SWIFT T. Damage tolerance in pressurized fuselages[C]//Proceedings of the 14th ICAF Symposium, 1987.
[7] KEVIN M W, LYNETTE L H, MATTHEW S E, et al. USAF F-16A/B fuel shelf joint structural risk assessment[C]//USAF ASIP Conference,28-30,2006.
[8] Department of Defense Standard Practice. Aircraft structural integrity program (ASIP):MIL-STD-1530 D[R]. 2016.
[9] Airplane strength and rigidity reliability requirements, repeated loads, fatigue and damage tolerance:MIL-A-8866C[R].1987.
[10] 焦志强,舒成辉.飞机结构完整性设计思想的发展和标准的演变[J].航空标准化与质量,2010(1):21-24. JIAO Z Q, SHU C H. Development of aircraft structure integrity design thought and evolution of standards[J]. Aviation Standardization and Quality,2010(1):21-24(in Chinese).
[11] ANDERS B. Important events, state of the art, and ICAF activities[C]//ICAS2018, 2018.
[12] HUANG Y J, GUAN Z D, LI H T. Effects of chamfering, cold expansion, bolt clamping, and their combinations on fatigue life of aluminum-lithium alloy single plate[J].Mechanical Engineering, 2018, 10(1):1-13.
[13] RAVINDER C. A review of research on aeronautical fatigue in the United States 2013-2015[C]//Proceedings of the 34th conference of ICAF, 2015.
[14] JONES K W, DUNN L M. Predicting corner crack fatigue propagation from cold worked holes[J]. Engineering Fracture Mechanics, 2009, 76(13):2074-2090.
[15] PARDHU Y, RAJULAPATI K V, PRASAD G V R, et al. Effect of laser shock peening on high cycle fatigue characteristics of 316LN stainless steel[J]. International Journal of Pressure Vessels and Piping, 2019, 176:103972.
[16] ELKE H. Review of aeronautical fatigue investigations in Germany during the period april 2013 to March 2015[C]//Proceedings of the 34th Conference of ICAF,2015.
[17] ELKE H. Review of aeronautical fatigue investigations in Germany during the period April 2017 to March 2019[C]//Proceedings of the 36th Conference of ICAF, 2019.
[18] RAVINDER C. A review of research on aeronautical fatigue in the United States 2015-2017[C]//Proceedings of the 35th ICAF Conference, 2017.
[19] ESSAM S, AHMAD W. Cost modeling for aerospace composite applications[C]//The 19th ISPE International Conference on Concurrent Engineering-CE2012, 2012.
[20] MIKAEL P, PIERRE C, MARC T, et al. High temperature materials for aerospace applications:Ni-based superalloys and γ-TiAl alloys[J]. Comptes Rendus Physique, 2018, 19(8):657-671.
[21] 董登科,闫文伟,陈先民,等.民用飞机新型轻质结构设计技术发展现状[J].结构强度研究,2012(1):1-8. DONG D K, YAN W W, CHEN X M, et al. Development status of new lightweight structure design technology for civil aircraft[J]. Structural Strength Research,2012(1):1-8(in Chinese).
[22] IKUHIRO I, TSUTOMU T, YOSHIHISA S, et al. Application and features of titanium for the aerospace industry[R].Nippon Steel & Sumitomo Metal Technical Report, 2014.
[23] 王华明.高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese).
[24] MICHAEL G O. Additive manufacturing in the context of structural integrity[J]. International Journal of Fatigue, 2017, 94:168-177.
[25] HIROSHI K, YUKIHIRO K, TSUKASA W, et al. Fatigue characteristic of linear friction welded Ti-6Al-4V[C]//Proceedings of the 30th Symposium of ICAF, 2019.
[26] RAVINDER C. A review of research on aeronautical fatigue in the United States 2017-2019[C]//Proceedings of the 36th conference of ICAF, 2019.
[27] IVAN M, GORAN IV, MATTHIAS S, et al. Fatigue in additive manufactured aircraft:The long way to make it fly[C]//Proceedings of the 30th symposium of ICAF, 2019.
[28] DANIEL G, VITUS H, CLAUDIO D. Fatigue prediction of additive manufactured Ti-6Al-4V for aerospace:Effect of defects, surface roughness[C]//Proceedings of the 28th Symposium of ICAF, 2015.
[29] GORANSON U G. Fatigue issues in aircraft maintenance and repairs[J].International Journal of Fatigue,1997,19(Supp.1):S3-S21.
[30] 郑晓玲.民用飞机结构耐久性与损伤容限设计手册(上册):疲劳设计与分析[M].北京:航空工业出版社,2003. ZHENG X L. Design manual of durability and damage tolerance of civil aircraft structure (Vol.1):Fatigue design and analysis[M]. Beijing:Aviation Industry Press, 2003(in Chinese).
[31] BUBAEH J. On the physical justification of the term "state of fatigue of materials under cyclic loading", cyclizc stress strain) behavior analysis experimentation and failure prediction[R]. ASTMnSTP519, 1973:185-212.
[32] 曾春华,邹十践.疲劳分析方法及应用[M]. 北京:国防工业出版社,1991. ZENG C H,ZOU S J. Fatigue analysis methods and application[M]. Beijing:National Defense Industry Press,1991(in Chinese).
[33] MICHAEL G. Additive manufacturing in the context of structural integrity[J]. International Journal of Fatigue,2017, 94:168-177.
[34] SCHIJVE J. Four lectures on fatigue crack growth I. Fatigue crack growth and fracture mechanics[J]. Engineering Fracture Mechanics, 1979, 11(1):169-181.
[35] MILLER K J. The two thresholds of fatigue behavior[J]. Fatigue Fracture Engineering Materials Structures, 1993, 16(9):931-939.
[36] NAVAXRO A, DE LOS RIOS E R. A model for short fatigue crack propagation with an interpretation of the short-long crack transition[J]. Fatigue Fracture Engineering Materials Structures, 1987, 10(2):169-186.
[37] BARTER S, BURCHILL M, JONES M. Improving the prediction of small crack growth in 7XXX aluminum alloys[C]//Proceedings of the 28th Symposium of ICAF, 2015.
[38] BURCHILL M, BARTER S, CHAN L H. Improving fatigue life predictions with a crack growth rate material model based on small crack growth & legacy data[C]//17th Australian International Aerospace Congress (AIAC17), 2017.
[39] MURAKAMI Y, ENDO M. Effects of hardness and crack geometries on dKth of small cracks emanating from small defects[M].Ann Arbor:Mechanical Engineering Publications,1986.
[40] 《民机结构耐久性与损伤容限设计手册》编委会.民机结构耐久性与损伤容限设计手册(下册)[M]. 北京:航空工业出版社,2003. Editorial Board of Durability and Damage Tolerance Design Mannal for Civil Aircraft Structures.Design manual of durability and damage tolerance of civil aircraft structure (Vol.2):Fatigue design and analysis[M]. Beijing:Aviation Industry Press, 2003(in Chinese).
[41] ROE K L. SIEGMUND Y T. An irreversible cohesive zone model for interface fatigue crack growth simulation[J]. Engineering Fracture Mechanics, 2003, 70:209-232.
[42] DE-ANDRE A, PEREZ J L, ORTIZ M. Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading[J]. International Journal of Solids and Structures, 1999, 36(15):2231-2258.
[43] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Jourual for Numerical Methods in Engineering, 1999, 45(15):601-620.
[44] SHI J, CHOPP D, LUA S N, et al. Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions[J]. Engineering Fracture Mechanics, 2010,77(14):2840-2863.
[45] LECHEB S, NOUR A, CHELLIL A. An adaptive dynamic fracture for 3D fatigue crack growth using XFEM[J]. Engineering and Technology, 2013, 78:2003-2008.
[46] SINGH I V, MISHRA B K, BHATTACHARYA S. The numerical simulation of fatigue crack growth using extended finite element method[J].International Journal of Fatigue, 2012, 36(1):109-119.
[47] NICOLA Z, ENRICO T. A numerical approach to the disbanding mechanism of adhesive joints[C]//Proceedings of the 30th Symposium of ICAF, 2019.
[48] ASHLEY S. 3D measurements of microstructural small fatigue-crack evolution in an aluminum alloy[C]//Proceedings of the 28th Symposium of ICAF, 2015.
[49] MOHANTY J R, VERMA B B, RAY R K. Prediction of fatigue crack growth and residual life using an exponential model:Part II(model-I overload induced retardation)[J].International Journal of Fatigue, 2009, 31:425-432.
[50] ELISE L, FRANK H, PIERRE M. 3D crack propagation testing and modeling in thick aluminum 2024 T351[C]//Proceedings of the 35th Conference of ICAF, 2017.
[51] ALOUSIS L. Numerical predictions of evolving crack front geometry and fatigue life from countersunk holes in thin plates[D]. Kingston:Royal Military College of Canada, 2014.
[52] BUCHWEITZ I, SANTGERMA A, TURREL N. Airbus on the way to show compliance with WFD regulation[C]//Proceedings of the 27th ICAF Symposium, 2013.
[53] BORIS G, NESTERENKOL G, NESTERENKOL I, et al. Russian practice to provide safe operation of airplane structures with long-term operation[C]//Proceedings of the 30th ICAF Symposium, 2019.
[54] FABIANO H. Widespread fatigue damage evaluation for multiple elements based on probabilistic approach[C]//Proceedings of the 30th ICAF Symposium, 2019.
[55] OKADA T, LIAO M, MACHIDA S, et al. WFD evaluation of riveted lap joint[C]//Proceedings of the 28th Symposium of ICAF, 2015.
[56] ANSART T H. Review of aeronautical fatigue investigations in France during the period May 2013-April 2015[C]//34th Conference of ICAF, 2015.
[57] Federal Aviation Administration. Aging aircraft program:Widespread fatigue damage,proposed rule[J].Federal Register,2006,74(71):19927-19951.
[58] 刘文珽,郑旻仲,费斌军.概率断裂力学与概率损伤容限/耐久性[M]. 北京:北京航空航天大学出版社, 1999. LIU W T, ZHENG M Z, FEI B J. Probabilistic fracture mechanics and probabilistic damage tolerance/durability[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 1999(in Chinese).
[59] JUAN O, HARRY M, NATHAN C. An ultrafast crack growth lifing model to support digital twin, virtual testing, and probabilistic damage tolerance applications[C]//Proceedings of the 30th Symposium of ICAF, 2019.
[60] 郑建军,唐吉运,王彬文.C919飞机全机静力试验技术[J].航空学报,2019,40(1):522364. ZHENG J J, TANG J Y, WANG B W. Static test technology of C919 aircraft[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522364(in Chinese).
[61] STEVEN C, ANTONIO R, BRANDON C, et al. Structural durability and damage tolerance in the next century of commercial aviation[C]//Proceedings of the 28th of ICAF Symposium, 2015.
[62] STEVEN A C, BRANDON D C, SHANE R S, et al. Full-scale fatigue testing at boeing commercial airplanes:From the 707 to the 787[C]//Proceedings of the 35th Conference of ICAF, 2017.
[63] ANSART T. Review of aeronautical fatigue investigations in France during the period May 2015-April 2017[C]//Proceedings of the 35th Conference of ICAF, 2017.
[64] ELKE H. Review of aeronautical fatigue investigations in germany during the period april 2015 to March 2017[C]//Proceedings of the 35th Conference of ICAF, 2017.
[65] BOSCH P, EYRE J D. A new experience of fatigue testing with the A350 XWB[C]//Proceedings of the 29th Symposium of ICAF, 2017.
[66] BOSCH P,NIELSEN T, RADIANT Y. Test program for the A380 major fatigue test[C]//Proceedings of the 23th Symposium of ICAF, 2005.
[67] ANDRÉ C B, ALEXANDRE B, ROBERT P. Bombardier global 7500 fatigue test cycle rate commissioning to 1/4 Lifen[C]//Proceedings of the 30th Symposium of ICAF, 2019.
[68] GRAHAM K, ARTIM M, DAVERSCHOT D. Aircraft fatigue analysis in the digital age[C]//Proceedings of the 29th Symposium of ICAF, 2017.
[69] TUSCH O, STODT M, WU D. Changing the philosophy of full-scale-fatigue-tests derived from 50 years of IABG experience towards a virtual environment[C]//Proceedings of the 30th Symposium of ICAF, 2019.
[70] PARK H, MACKEY R, JAMES M, et al. Analysis of space shuttle main engine data using beacon-based exception analysis for multi-missions[C]//IEEE Aerospace Conference Proceedings. Piscataway:IEEE Press, 2002:2835-2844.
[71] PARK H G, CANNON H, BAJWA A, et al. Hybrid diagnostic system:Beacon-based exception analysis for multimissions-livingstone Integlation[C]//Society for Machinery Failure Prevenhon Technology (MFPT) Conference, 2004.
[72] 王仲生,余汇,芦玉华,等. 大飞机测控关键技术现状及其应用[J].航空制造技术, 2009,52(8):54-57. WANG Z S, XU H, LU Y H, et al. Current status and application of key measurement and control technologies in large commercial jet[J]. Aeronautical Manufacturing Technology, 2009, 52(8):54-57(in Chinese).
[73] JON D. The TATEM Solution[Z].TATEM Consortium-Aero Days, 2006.
[74] The TATEM project supporting concepts[EB/OL].http://www.tatemproject.com/pg14.html.
[75] PHIL J, KEVIN W. A review of Australian investigations on aeronautical fatigue and structural integrity during the period April 2015 to march 2017[C]//Proceedings of the 35th Conference of ICAF, 2017.
[76] KIMBERLI J, BRYCE H, MATT R. Long term viper-flying the F-16 to 8000 hours and beyond[C]//Proceedings of the 29th Symposium of ICAF, 2017.
[77] TOMI V, PIRITTA V, ASLAK S. A review of aeronautical fatigue investigations in Finland march 2015-march 2017[C]//Proceedings of the 35th Conference of ICAF, 2017.
[78] ZICHENKOV M C, KONOVALOV V V, SCHERBAN K S. A review of fatigue test of full scale aeronautical structures in TsAGI during the period from 2015 to 2017[C]//Proceedings of the 29th Symposium of ICAF, 2017.
[79] SHCHERBAN K S, SURNACHEV A A, LIMONIN M V, et al. Combined static and fatigue tests of the full-scale structure of a transport aircraft[C]//Proceedings of the 29th Symposium of ICAF, 2017.